967 resultados para phosphate fertilizers


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Cu2(μO2CCH3)4(H2O)2], [CuCO3·Cu(OH)2], [CoSO4·7H2O], [Co((+)-tartrate)], and [FeSO4·7H2O] react with excess racemic (±)- 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate {(±)-PhosH} to give mononuclear CuII, CoII and FeII products. The cobalt product, [Co(CH3OH)4(H2O)2]((+)-Phos)((−)-Phos) ·2CH3OH·H2O (7), has been identified by X-ray diffraction. The high-spin, octahedral CoII atom is ligated by four equatorial methanol molecules and two axial water molecules. A (+)- and a (−)-Phos− ion are associated with each molecule of the complex but are not coordinated to the metal centre. For the other CoII, CuII and FeII samples of similar formulation to (7) it is also thought that the Phos− ions are not bonded directly to the metal. When some of the CuII and CoII samples are heated under high vacuum there is evidence that the Phos− ions are coordinated directly to the metals in the products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aphids are important pests of spring cereals and their abundance and the impact of their natural enemies may be influenced by fertilizer regime.2We conducted a 2-year field study investigating the effects of organic slow-release and conventional fertilizers on cereal aphids, hymenopteran parasitoids and syrphid predators and considered how the effects of fertilizers on barley morphology and colour might influence these species.3Barley yield was greater in conventionally fertilized pots. Barley morphology was also affected by treatment: vegetative growth was greater under conventional treatments. Barley receiving organic fertilizers or no fertilizer was visually more attractive to aphids compared with plants receiving conventional fertilizers.4Aphids were more abundant in conventionally fertilized barley but the reason for this increased abundance was species specific. Metopolophium dirhodum was responding to fertilizer effects on plant morphology, whereas Rhopalosiphum padi was sensitive to the temporal availability of nutrients.5Syrphid eggs were more numerous in conventionally fertilized pots, whereas the response of parasitoids appeared to be dependent on the abundance of aphids, although the number of parasitoid mummies was low in both years.6This research shows that the fertilizer treatment used can affect numerous characteristics of plant growth and colour, which can then influence higher trophic levels. This knowledge might be used to make more informed fertilizer application choices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enveloped virus release is driven by poorly understood proteins that are functional analogs of the coat protein assemblies that mediate intracellular vesicle trafficking. We used differential electron density mapping to detect membrane integration by membrane-bending proteins from five virus families. This demonstrates that virus matrix proteins replace an unexpectedly large portion of the lipid content of the inner membrane face, a generalized feature likely to play a role in reshaping cellular membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Phosphorus (P) is an essential macronutrient for plants. Plants take up P as phosphate (Pi) from the soil solution. Since little Pi is available in most soils, P fertilizers are applied to crops. However, the use of P fertilizers is unsustainable and may cause pollution. Consequently, there is a need to develop more P-use-efficient (PUE) crops and precise methods to monitor crop P-status. Scope: Manipulating the expression of genes to improve the PUE of crops could reduce their P fertilizer requirement. This has stimulated research towards the identification of genes and signalling cascades involved in plant responses to P deficiency. Genes that respond to P deficiency can be grouped into 'early' genes that respond rapidly and often non-specifically to P deficiency, or 'late' genes that impact on the morphology, physiology or metabolism of plants upon Prolonged P deficiency. Summary: The use of micro-array technology has allowed researchers to catalogue the genetic responses of plants to P deficiency. Genes whose expression is altered by P deficiency include various transcription factors, which are thought to coordinate plant responses to P deficiency, and other genes involved in P acquisition and tissue P economy. Several common cis-regulatory elements have been identified in the promoters of these genes, suggesting that their expression might be coordinated. It is suggested that knowledge of the genes whose expression changes in response to P deficiency might allow the development of crops with improved PUE, and could be used in diagnostic techniques to monitor P deficiency in crops either directly using 'smart' indicator plants or indirectly through transcript profiling. The development of crops with improved PUE and the adoption of diagnostic technology could reduce production costs, minimize the use of a non-renewable resource, reduce pollution and enhance biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. Methods: Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus 'Tapidor' x 'Ningyou 7' (TNDH) using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. Key Results: In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. Conclusions: High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although contraction of human isolated bronchi is mediated mainly by tachykinin NK2 receptors, NK1 receptors, via prostanoid release, contract small-size (approximately 1 mm in diameter) bronchi. Here, we have investigated the presence and biological responses of NK1 receptors in medium-size (2-5 mm in diameter) human isolated bronchi. Specific staining was seen in bronchial sections with an antibody directed against the human NK1 receptor. The selective NK1 receptor agonist, [Sar(9), Met(O2)(11)]SP, contracted about 60% of human isolated bronchial rings. This effect was reduced by two different NK1 receptor antagonists, CP-99,994 and SR 140333. Contraction induced by [Sar(9), Met(O2)(11)]SP was independent of acetylcholine and histamine release and epithelium removal, and was not affected by nitric oxide synthase and cyclooxygenase (COX) inhibition. [Sar(9), Met(O2)(11)]SP increased inositol phosphate (IP) levels, and SR 140333 blocked this increase, in segments of medium- and small-size (approximately 1 mm in diameter) human bronchi. COX inhibition blocked the IP increase induced by [Sar(9), Met(O2)(11)]SP in small-size, but not in medium-size, bronchi. NK1 receptors mediated bronchoconstriction in a large proportion of medium-size human bronchi. Unlike small-size bronchi this effect is independent of prostanoid release, and the results are suggestive of a direct activation of smooth muscle receptors and IP release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: We investigated the role of arbuscular mycorrhizal fungi (AMF) and heterotrophic soil microbes in the uptake of phosphorus (P) by Trifolium subterraneum from a pulse. Methods: Plants were grown in sterilised pasture field soil with a realistic level of available P. There were five treatments, two of which involved AMF: 1) unsterilised field soil containing a community of AMF and heterotrophic organisms; 2) Scutellospora calospora inoculum (AMF); 3) microbes added as filtrate from the field soil; 4) microbes added as filtrate from the S. calospora inoculum; 5) no additions, i.e. sterilised field soil. After 11 weeks, plants were harvested: 1 day before (day 0), 1 day after (day 2) and 7 days after (day 8) the pulse of P (10 mg kg−1). Results: There was no difference among treatments in shoot and root dry weight, which increased from day 0 to day 8. At day 0, shoots and roots of plants in the colonised treatments had higher P and lower Mn concentrations. After the pulse, the rate of increase in P concentration in the shoots was slower for the colonised plants, and the root Mn concentration declined by up to 50 % by day 2. Conclusions: Plants colonised by AMF had a lower rate of increase in shoot P concentration after a pulse, perhaps because intraradical hyphae accumulated P and thus reduced its transport to the shoots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three species of ectomycorrhizal fungi (Hebeloma crustuliniforme, Suillus variegatus and Cenococcum geophilum) were grown in axenic culture amended with range of AsO43– concentration under three different PO43– regimes. The fungi exhibited different growth responses to AsO43– that varied with PO43– concentration. Suillus variegatus showed the greatest sensitivity to AsO43–, with growth almost completely inhibited in the presence of AsO43– under the lower two PO43– treatments. Under the highest PO43– treatment however, growth was enhanced and S. variegatus was able to persist at AsO43– concentrations of up to 4 mM. Hebeloma crustuliniforme also showed high sensitivity to AsO43– especially at low PO43– concentration. The two higher PO43– treatments had an ameliorating effect on AsO43– toxicity in H. crustuliniforme. This demonstrates the ability of PO43– to alleviate AsO43– toxicity. The response from S. variegatus and H. crustuliniforme, both basidiomycetes, was in contrast to the ascomycete C. geophilum. This fungus demonstrated tolerance to AsO43– when grown in culture solution and PO43– did not have an ameliorating effect on AsO43– toxicity in C. geophilum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We predicted that P-fertiliser residues will limit the establishment of native plant species and their mycorrhizas to old-fields in the wheat-growing region (i.e. the wheatbelt) of Western Australia. To test this prediction, we assessed the growth and P uptake of seedlings of three native plant species to phosphate addition and inoculation with arbuscular mycorrhizas (AM) in a pot study. The native plant species were Acacia acuminata Benth. (Mimosaceae), Eucalyptus loxophleba Benth. subsp. loxophleba (Myrtaceae) and Hakea preissii Meisn. (Proteaceae); and each pot contained one seedling. P was added to field soil to mimic pre-agricultural (P0), old-field (P1) and 10 times old-field (P10) soils. AM inoculant, which was a mix of Scutellospora calospora (Nicolson and Gerdemann) Walker and Sanders, Glomus intraradices Schenck and Smith and Glomus mosseae (Nicolson and Gerdemann) Gerdemann and Trappe, was added to half of the pots. After 12 weeks, the biomass and P uptake of the mycorrhizal A. acuminata were greater than those of the non-mycorrhizal plants across all P treatments. Plant biomass decreased significantly with increasing P addition, yet this species was apparently unable to suppress its mycorrhizal colonisation at high P despite this reduction in growth. In contrast, mycorrhizal and non-mycorrhizal E. loxophleba subsp. loxophleba were of a similar biomass after 12 weeks; maximum biomass was attained at intermediate (old-field) levels of P. P uptake increased with increasing P supply, beyond that required to attain maximum biomass. AM did not form on H. preissii. P uptake increased with increasing P supply for this species also. Overall, it is the apparent inability of these species to down-regulate P uptake rather than a lack of mycorrhizal symbiosis that will constrain their establishment on wheatbelt old-fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the complex issue of reversing long-term improvements of fertility in soils derived from heathlands and acidic grasslands using sulfur-based amendments. The experiment was conducted on a former heathland and acid grassland in the U.K. that was heavily fertilized and limed with rock phosphate, chalk, and marl. The experimental work had three aims. First, to determine whether sulfurous soil amendments are able to lower pH to a level suitable for heathland and acidic grassland re-creation (approximately 3 pH units). Second, to determine what effect the soil amendments have on the available pool of some basic cations and some potentially toxic acidic cations that may affect the plant community. Third, to determine whether the addition of Fe to the soil system would sequester PO4− ions that might be liberated from rock phosphate by the experimental treatments. The application of S0 and Fe(II)SO4− to the soil was able to reduce pH. However, only the highest S0 treatment (2,000 kg/ha S) lowered pH sufficiently for heathland restoration purposes but effectively so. Where pH was lowered, basic cations were lost from the exchangeable pool and replaced by acidic cations. Where Fe was added to the soil, there was no evidence of PO4− sequestration from soil test data (Olsen P), but sequestration was apparent because of lower foliar P in the grass sward. The ability of the forb Rumex acetosella to apparently detoxify Al3+, prevalent in acidified soils, appeared to give it a competitive advantage over other less tolerant species. We would anticipate further changes in plant community structure through time, driven by Al3+ toxicity, leading to the competitive exclusion of less tolerant species. This, we suggest, is a key abiotic driver in the restoration of biotic (acidic plant) communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in inositol auxotrophy that can only be partially rescued by exogenous inositol. Removal of inositol supplementation from the ino1- mutant results in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis and substrate adhesion. Inositol depletion also caused a dramatic generalised decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 independent of inositol biosynthesis. To characterise this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) was identified with homology to mammalian macromolecular complex adaptor proteins. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Phosphate (Pi) is one of the most limiting nutrients for agricultural production in Brazilian soils due to low soil Pi concentrations and rapid fixation of fertilizer Pi by adsorption to oxidic minerals and/or precipitation by iron and aluminum ions. The objectives of this study were to quantify phosphorus (P) uptake and use efficiency in cultivars of the species Coffea arabica L. and Coffea canephora L., and group them in terms of efficiency and response to Pi availability. Methods: Plants of 21 cultivars of C. arabica and four cultivars of C. canephora were grown under contrasting soil Pi availabilities. Biomass accumulation, tissue P concentration and accumulation and efficiency indices for P use were measured. Key Results: Coffee plant growth was significantly reduced under low Pi availability, and P concentration was higher in cultivars of C. canephora. The young leaves accumulated more P than any other tissue. The cultivars of C. canephora had a higher root/shoot ratio and were significantly more efficient in P uptake, while the cultivars of C. arabica were more efficient in P utilization. Agronomic P use efficiency varied among coffee cultivars and E16 Shoa, E22 Sidamo, Iêmen and Acaiá cultivars were classified as the most efficient and responsive to Pi supply. A positive correlation between P uptake efficiency and root to shoot ratio was observed across all cultivars at low Pi supply. These data identify Coffea genotypes better adapted to low soil Pi availabilities, and the traits that contribute to improved P uptake and use efficiency. These data could be used to select current genotypes with improved P uptake or utilization efficiencies for use on soils with low Pi availability and also provide potential breeding material and targets for breeding new cultivars better adapted to the low Pi status of Brazilian soils. This could ultimately reduce the use of Pi fertilizers in tropical soils, and contribute to more sustainable coffee production.