959 resultados para pancreatic islet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role and mechanism of nonparallel pancreatic secretion of digestive enzymes, in which enzyme proportions change in rapidly regulated fashion, remain controversial. Secretion was collected from male 2.2-kg New Zealand rabbits in 5-min intervals for 3 h under basal conditions or constant stimulation with cholecystokinin (CCK; 0.1 microgram per kg per h i.v.) or methacholine chloride (MCh; 40 micrograms per kg per h i.v.). Both CCK and MCh produced an 8-fold stimulation of protein output. Enzymes were separated by SDS/PAGE and quantitated by densitometry of Coomassie blue-stained gels. Under both basal conditions and constant MCh infusion, rapid neurosecretory-like 12-min cyclic changes occurred in the proportions of amylase, lipase I, chymotrypsinogen, and trypsinogen. During constant infusion their percentages changed as much as 10-fold, and their ratios cycled by as much as 30-fold. The mean percentage for the entire infusion period for lipase I declined > 25% with CCK or MCh, for amylase it rose approximately 30%, and for chymotrypsinogen and trypsinogen it doubled (for all, P < 0.05). CCK and MCh elicited subtly but significantly different mean enzyme percentages and enzyme ratios (P < 0.05) for amylase, chymotrypsinogen, and trypsinogen; these differences were also confirmed by regression and correlation analyses. The changes in enzyme percentages and ratios were explicitly consistent with secretagogue-caused shifts in the intrapancreatic enzyme secretory sources. Nonparallel secretion of digestive enzymes occurs routinely, even during constant stimulation, and is due to cyclic neurosecretory-like secretion from heterogeneous intrapancreatic sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eukaryotic translation initiation factor 2 alpha (eIF2α) is part of the initiation complex that drives the initiator amino acid methionine to the ribosome, a crucial step in protein translation. In stress conditions such as virus infection, endoplasmic reticulum (ER) stress, amino acid or heme deficiency eIF2α can be phosphorylated and thereby inhibit global protein synthesis. This adaptive mechanism prevents protein accumulation and consequent cytotoxic effects. Heme-regulated eIF2α kinase (HRI) is a member of the eIF2α kinase family that regulates protein translation in heme deficiency conditions. Although present in all tissues, HRI is predominantly expressed in erythroid cells where it remains inactive in the presence of normal heme concentrations. In response to heme deficiency, HRI is activated and phosphorylates eIF2α decreasing globin synthesis. This mechanism is important to prevent accumulation of heme-free globin chains which cause ER stress and apoptosis. RNA sequencing data from our group showed that in human islets and in primary rat beta cells HRI is the most expressed eIF2α kinase compared to the other family members. Despite its high expression levels, little is known about HRI function in beta cells. The aim of this project is to identify the role of HRI in pancreatic beta cells. This was investigated taking a loss-of-function approach. HRI knock down (KD) by RNA interference induced beta cell apoptosis in basal condition. HRI KD potentiated the apoptotic effects of palmitate or proinflammatory cytokines, two in vitro models for type 2 and type 1 diabetes, respectively. Increased cytokine-induced apoptosis was also observed in HRI-deficient primary rat beta cells. Unexpectedly, we observed a mild increase in eIF2α phosphorylation in HRI-deficient cells. The levels of mRNA or protein expression of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) were not modified. HRI KD cells have decreased spliced X-box binding protein 1 (XBP1s), an important branch of the ER stress response. However, overexpression of XBP1s by adenovirus in HRI KD cells did not protect from HRI siRNA-induced apoptosis. HRI deficiency decreased phosphorylation of Akt and its downstream targets glycogen synthase kinase 3 (GSK3), forkhead box protein O1 (FOXO1) and Bcl-2-associated death promoter (BAD). Overexpression of a constitutively active form of Akt by adenovirus in HRI-deficient beta cells partially decreased HRI KD-mediated apoptosis. Interestingly, BAD silencing protected from apoptosis caused by HRI deficiency. HRI silencing in beta cells also induced JNK activation. These results suggest an important role of HRI in beta cell survival through modulation of the Akt/BAD pathway. Thus, HRI may be an interesting target to modulate beta cell fate in diabetic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the hallmarks of cancer is its unlimited replicative potential that needs a compensatory mechanism for the consequential telomere erosion. Telomerase promoter (TERTp) mutations were recently reported as a novel mechanism for telomerase re-activation/expression in order to maintain telomere length. Pancreatic endocrine tumors (PETs) were so far recognized to rely mainly on the alternative lengthening of telomeres (ALT) mechanism. It was our objective to study if TERTp mutations were present in pancreatic endocrine tumors (PET) and could represent an alternative mechanism to ALT. TERTp mutations were detected in 7% of the cases studied and were mainly associated to patients harbouring hereditary syndromes. In vitro, using PET-derived cell lines and by luciferase reporter assay, these mutations confer a 2 to 4-fold increase in telomerase transcription activity. These novel alterations are able to recruit ETS transcription factor members, in particular GABP-α and ETV1, to the newly generated binding sites. We report for the first time TERTp mutations in PETs and PET-derived cell lines. Additionally, our data indicate that these mutations serve as an alternative mechanism and in an exclusive manner to ALT, in particular in patients with hereditary syndromes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations of the MEN1 gene, encoding the tumor suppressor menin, predispose individuals to the cancer syndrome multiple endocrine neoplasia type 1, characterized by the development of tumors of the endocrine pancreas and anterior pituitary and parathyroid glands. We have targeted the murine Men1 gene by using Cre recombinase-loxP technology to develop both total and tissue-specific knockouts of the gene. Conditional homozygous inactivation of the Men1 gene in the pituitary gland and endocrine pancreas bypasses the embryonic lethality associated with a constitutional Men1(-/-) genotype and leads to beta-cell hyperplasia in less than 4 months and insulinomas and prolactinomas starting at 9 months. The pituitary gland and pancreas develop normally in the conditional absence of menin, but loss of this transcriptional cofactor is sufficient to cause beta-cell hyperplasia in some islets; however, such loss is not sufficient to initiate pituitary gland tumorigenesis, suggesting that additional genetic events are necessary for the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of protein kinase C (PKC) in glucose-stimulated insulin secretion (GSIS) is controversial. Using recombinant adenoviruses for overexpression of PKCalpha and PKCdelta, in both wild-type (WT) and kinase-dead (KD) forms, we here demonstrate that activation of these two PKCs is neither necessary nor sufficient for GSIS from batch-incubated, rat pancreatic islets. In contrast, responses to the pharmacologic activator 12-O-tetradecanoylphorbol-13-acetate (TPA) were reciprocally modulated by overexpression of the PKCalphaWT or PKCalphaKD but not the corresponding PKCdelta adenoviruses. The kinetics of the secretory response to glucose (monitored by perifusion) were not altered in either cultured islets overexpressing PKCalphaKD or freshly isolated islets stimulated in the presence of the conventional PKC (cPKC) inhibitor Go6976. However, the latter did inhibit the secretory response to TPA. Using phosphorylation state-specific antisera for consensus PKC phosphorylation sites, we also showed that (compared with TPA) glucose causes only a modest and transient functional activation of PKC (maximal at 2-5 min). However, glucose did promote a prolonged (15 min) phosphorylation of PKC substrates in the presence of the phosphatase inhibitor okadaic acid. Overall, the results demonstrate that glucose does stimulate PKCalphain pancreatic islets but that this makes little overall contribution to GSIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. Experimental Design: RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. Results: We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARa, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and Pan IN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early Pan IN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. Conclusions: We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weight loss in advanced cancer patients is refractory to conventional nutritional support. This may be due to metabolic changes mediated by proinflammatory cytokines, hormones, and tumor-derived products. We previously showed that a nutritional supplement enriched with fish oil will reverse weight loss in patients with pancreatic cancer cachexia. The present study examines the effect of this supplement on a number of mediators thought to play a role in cancer cachexia. Twenty weight-losing patients with pancreatic cancer were asked to consume a nutritional supplement providing 600 kcal and 2 g of eicosapentaenoic acid per day. At baseline and after 3 wk, patients were weighed and samples were collected to measure serum concentrations of interleukin (IL)-6 and its soluble receptor tumor necrosis factor receptors I and II, cortisol, insulin, and leptin, peripheral blood mononuclear cell production of IL-1 beta, IL-6, and tumor necrosis factor, and urinary excretion of proteolysis inducing factor. After 3 wk of consumption of the fish oil-enriched nutritional supplement, there was a significant fall in production of IL-6 (from median 16.5 to 13.7 ng/ml, P = 0.015), a rise in serum insulin concentration (from 3.3 to 5.0 mU/l, P = 0.0064), a fall in the cortisol-to-insulin ratio (P = 0.0084), and a fall in the proportion of patients excreting proteolysis inducing factor (from 88% to 40%, P = 0.008). These changes occurred in association with weight gain (median 1 kg, P = 0.024). Various mediators of catabolism in cachexia are modulated by administration of a fish oil-enriched nutritional supplement in pancreatic cancer patients. This may account for the reversal of weight loss in patients consuming this supplement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA sequence of the chromosomal gene cluster encoding the SEF14 fimbriae of Salmonella enterica serovar Enteritidis was determined. Five contiguous open reading frames, sefABCDE, were identified. The sefE gene shared significant homology with araC-like positive regulators. Serovar-associated virulence plasmid (SAP) genes orf7,8,9 and pefI were identified immediately adjacent to the sef operon. The pefI gene encoded a putative regulator of the Plasmid-encoded fimbrial antigen (PEF) expression. The entire sef--pef region, flanked by two IS-like elements, was inserted adjacent to leuX that encoded a transfer RNA molecule. The organisation of this region was suggestive of a classic pathogenicity islet. Southern hybridisation confirmed two copies of the SAP derived orf7,8,9 and pefI region in S. Enteritidis, one in the chromosome and one on the SAP. Of other group D Salmonella, only S. Blegdam and S. Moscow harboured both chromosomal and plasmid copies of pefI--orf9 region although polymorphism was evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis concerns the mechanism through which enteral delivery of glucose results in a larger insulin response than an equivalent parenteral glucose load. Preliminary studies in which mice received a glucose solution either intragastrically or intraperitoneally confirmed this phenomenon. An important regulatory system in this respect is the entero-insular axis, through which insulin secretion is influenced by neural and endocrine communication between the gastrointestinal tract and the pancreatic islets of Langerhans. Using an in vitro system involving static incubation of isolated (by collagenase digestion) islets of Langerhans, the effect of a variety of gastrointestinal peptides on the secretion of the four main islet hormones, namely insulin, glucagon, somatostatin and pancreatic polypeptide, was studied. The gastrointestinal peptides investigated in this study were the secretin family, comprising secretin, glucagon, gastric inhibitory polypeptide (GIP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI) and growth hormone releasing factor (GRF). Gastrin releasing peptide (GRP) was also studied. The results showed that insulin release was stimulated by all peptides studied except PHI, glucagon release was stimulated by all peptides tested, except GRF which suppressed glucagon release, somatostatin release was stimulated by GIP and GRF but suppressed by VIP, PHI, glucagon and secretin, and PP release was stimulated by GIP and GRF, but suppressed by PHI. The insulinotropic effect of GRP was investigated further. A perifusion system was used to examine the time-course of insulin release from isolated islets after stimulation with GRP. GRP was shown to be insulinotropic only in the presence of physiologically elevated glucose concentrations and both first and second phases of insulin release were augmented. There was no effect at substimulatory or very high glucose concentrations. Studies using a cultured insulin-secreting islet cell line, the RINm5F cell line, were undertaken to elucidate the intracellular mechanism of action of GRP. This peptide did not enhance insulin release via an augmentation of glucose metabolism, or via the adenylate cyclase/cyclic AMP secondary messenger system. The pattern of changes of cytosolic free calcium in response to GRP, which involved both mobilization of intracellular stores and an influx of extracellular calcium, suggested the involvement of phosphatidylinositol bisphosphate breakdown as a mediator of the effect of GRP on insulin secretion.