668 resultados para optical fibre sensors
Resumo:
Respiratory-volume monitoring is an indispensable part of mechanical ventilation. Here we present a new method of the respiratory-volume measurement based on a single fibre-optical long-period sensor of bending and the correlation between torso curvature and lung volume. Unlike the commonly used air-flow based measurement methods the proposed sensor is drift-free and immune to air-leaks. In the paper, we explain the working principle of sensors, a two-step calibration-test measurement procedure and present results that establish a linear correlation between the change in the local thorax curvature and the change of the lung volume. We also discuss the advantages and limitations of these sensors with respect to the current standards. © 2013 IEEE.
Resumo:
An array of FBG curvature sensors are wavelength-interrogated and the recovered data combined with a three-dimensional algorithm to reconstruct in real time the enveloped object with a 1% to 9% volumetric error. © 2012 OSA.
Resumo:
The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
Tactile sensors are needed for many emerging robotic and telepresence applications such as keyhole surgery and robot operation in unstructured environments. We have proposed and demonstrated a tactile sensor consisting of a fibre Bragg grating embedded in a polymer "finger". When the sensor is placed in contact with a surface and translated tangentially across it measurements on the changes in the reflectivity spectrum of the grating provide a measurement of the spatial distribution of forces perpendicular to the surface and thus, through the elasticity of the polymer material, to the surface roughness. Using a sensor fabricated from a Poly Siloxane polymer (Methyl Vinyl Silicone rubber) spherical cap 50 mm in diameter, 6 mm deep with an embedded 10 mm long Bragg grating we have characterised the first and second moment of the grating spectral response when scanned across triangular and semicircular periodic structures both with a modulation depth of 1 mm and a period of 2 mm. The results clearly distinguish the periodicity of the surface structure and the differences between the two different surface profiles. For the triangular structure a central wavelength modulation of 4 pm is observed and includes a fourth harmonic component, the spectral width is modulated by 25 pm. Although crude in comparison to human senses these results clearly shown the potential of such a sensor for tactile imaging and we expect that with further development in optimising both the grating and polymer "finger" properties a much increased sensitivity and spatial resolution is achievable.
Resumo:
Artificial tactile sensing systems using the distributive tactile sensing technique and fibre Bragg grating sensors are presented. A one-dimensional arrangement, with possible applications in an endoscope, is compared with a similar arrangement using conventional electronic sensors. A two-dimensional sensing surface is described, with potential applications in human balance and gait analysis, capable of detecting simultaneously the position and shape of an object placed upon it. It is believed that this work represents the first use of fibre Bragg grating sensors in a distributive sensing regime.
Resumo:
Two distributive tactile sensing systems are presented, based on fibre Bragg grating sensors. The first is a one-dimensional metal strip with an array of 4 sensors, which is capable of detecting the magnitude and position of a contacting load. This system is compared experimentally with a similar system using resistive strain gauges. The second is a two-dimensional steel plate with 9 sensors which is able to distinguish the position and shape of a contacting load. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso showing reasonable agreement with a spirometer used simultaneously to record the volume at the mouth during breathing. The curvature sensors are based upon long period gratings written in a progressive three layered fibre that are insensitive to refractive index changes. The sensor platform consists of the long period grating laid upon a carbon fibre ribbon, which is encapsulated in a low temperature curing silicone rubber. An array of sensors is also used to reconstruct the shape changes of a resuscitation manikin during simulated respiration. The data for reconstruction is obtained by two methods of multiplexing and interrogation: firstly using the transmission spectral profile of the LPG's attenuation bands measured using an optical spectrum analyser; secondly using a derivative spectroscopy technique.
Resumo:
Presented are long-period gratings (LPGs) fabricated in pure silica photonic crystal fibre (PCF) using an electric arc. Two different varieties of PCF have been investigated, an endlessly single mode PCF and a large-mode area PCF. The LPGs have been characterised for their sensitivity to a variety of external measurands. The LPGs in both fibres have been found to have negligible temperature sensitivity whilst exhibiting good sensitivity to bending and strain.
Resumo:
We investigate the use of an arrayed waveguide grating (AWG) to interrogate both fibre Bragg grating (FBG) and interferometric sensors. A broadband light source is used to illuminate both the FBG and interferometric sensors. Reflected spectral information is directed to an AWG with integral photodetectors providing 40 electrical outputs. To interrogate interferometric sensors we investigated the dual wavelength technique to measure the distance of a Fabry-Perot cavity, which produced a maximum unambiguous range of 1440μm with an active sensor. Three methods are described to interrogate FBG sensors. The first technique makes use of the reflected light intensity in an AWG channel passband from a narrow bandwidth grating, giving a usable range of 500με and a dynamic strain resolution of 96nε/√Hz at 30Hz. The second approach utilises wide gratings larger than the channel spacing of the AWG; by monitoring the intensity present in corresponding AWG channels an improved range of 1890με was achieved. The third method improves the dynamic range by utilising a heterodyne approach based on interferometric wavelength shift detection providing a dynamic strain resolution of 17nε/√Hz at 30Hz.
Resumo:
We experimentally demonstrate a Raman-Assisted Fibre Optical Parametric Amplifier (RA-FOPA) with 20dB net gain using wavelength division multiplexed signals. We report amplification of 10×58Gb/s 100GHz-spaced QPSK signals and show that by appropriate tuning of the parametric pump power and frequency, gain improvement of up to 5dB can be achieved for the RA-FOPA compared with combined individual contributions from the parametric and Raman pumps. We compare the RAFOPA with an equivalent-gain conventional FOPA and find that four-wave mixing crosstalk is substantially reduced by up to 5.8 ± 0.4dB using the RA-FOPA. Worst-case performance penalty of the RA-FOPA is found to be only 1.0 ± 0.2dB over all measured OSNRs, frequencies and input powers, making it an attractive proposal for future communications systems.