651 resultados para oncogene-addicted


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expression of the bovine papillomavirus E2 regulatory protein in human cervical carcinoma cell lines repressed expression of the resident human papillomavirus E6 and E7 oncogenes and within a few days caused essentially all of the cells to synchronously display numerous phenotypic markers characteristic of cells undergoing replicative senescence. This process was accompanied by marked but in some cases transient alterations in the expression of cell cycle regulatory proteins and by decreased telomerase activity. We propose that the human papillomavirus E6 and E7 proteins actively prevent senescence from occurring in cervical carcinoma cells, and that once viral oncogene expression is extinguished, the senescence program is rapidly executed. Activation of endogenous senescence pathways in cancer cells may represent an alternative approach to treat human cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determinative events in vertebrate embryogenesis appear to require the continuous expression of spatial regulators such as the clustered homeobox genes. The mechanisms that govern long-term patterns of gene expression are not well understood. In Drosophila, active and silent states of developmentally regulated loci are maintained by trithorax and Polycomb group. We have examined the developmental role of a mammalian homolog of trx and putative oncogene, Mll. Knockout mice reveal that Mll is required for maintenance of gene expression early in embryogenesis. Downstream targets of Mll including Hoxa7 are activated appropriately in the absence of Mll but require Mll for sustaining their expression. The Mll−/− phenotype manifests later in development and is characterized by branchial arch dysplasia and aberrant segmental boundaries of spinal ganglia and somites. Thus, Mll represents an essential mechanism of transcriptional maintenance in mammalian development, which functions in multiple morphogenetic processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mdm2 proto-oncogene is amplified to high copy numbers in human sarcomas and is overexpressed in a wide variety of other human cancers. Because Mdm2 protein forms a complex with the p53 tumor suppressor protein and down-regulates p53 function, the oncogenic potential of Mdm2 is presumed to be p53-dependent. To model these conditions in mice, we have used the entire Mdm2 gene, under transcriptional control of its native promoter region, as a transgene to create mice that overexpress Mdm2. The transgenic mice are predisposed to spontaneous tumor formation, and the incidence of sarcomas observed in the Mdm2-transgenic mice in the presence or absence of functional p53 demonstrates that, in addition to Mdm2-mediated inactivation of p53, there exists a p53-independent role for Mdm2 in tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we describe the components of a histone deacetylase (HDAC) complex that we term the CoREST-HDAC complex. CoREST-HDAC is composed of polypeptides distinct from previously characterized HDAC1/2-containing complexes such as the mSin3 and nucleosome remodeling and deacetylating (NRD, also named NURD, NuRD) complex. Interestingly, we do not observe RbAp46 and RbAp48 in this complex, although these proteins have been observed in all previously identified complexes and are thought to be part of an HDAC1/2 core. We identify the transcriptional corepressor CoREST and a protein with homology to polyamine oxidases as components of CoREST-HDAC. The HDAC1/2-interacting region of CoREST is mapped to a 179-aa region containing a SANT domain, a domain found in other HDAC1/2-interacting proteins such as NCoR, MTA1, and MTA2. Furthermore, we demonstrate that the corepressor function of CoREST depends on this region. Although CoREST initially was cloned as a corepressor to REST (RE1 silencing transcription factor/neural restrictive silencing factor), we find no evidence for the existence of the eight-zinc finger REST transcription factor as an interacting partner in this complex; however, we do find evidence for association of the putative oncogene ZNF 217 that contains eight zinc fingers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proto-oncogene c-myc (myc) encodes a transcription factor (Myc) that promotes growth, proliferation and apoptosis. Myc has been suggested to induce these effects by induction/repression of downstream genes. Here we report the identification of potential Myc target genes in a human B cell line that grows and proliferates depending on conditional myc expression. Oligonucleotide microarrays were applied to identify downstream genes of Myc at the level of cytoplasmic mRNA. In addition, we identified potential Myc target genes in nuclear run-on experiments by changes in their transcription rate. The identified genes belong to gene classes whose products are involved in amino acid/protein synthesis, lipid metabolism, protein turnover/folding, nucleotide/DNA synthesis, transport, nucleolus function/RNA binding, transcription and splicing, oxidative stress and signal transduction. The identified targets support our current view that myc acts as a master gene for growth control and increases transcription of a large variety of genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the representation difference analysis technique, we have identified a novel gene, Ian4, which is preferentially expressed in hematopoietic precursor 32D cells transfected with wild-type versus mutant forms of the Bcr/Abl oncogene. Ian4 expression was undetectable in 32D cells transfected with v-src, oncogenic Ha-ras or v-Abl. Murine Ian4 maps to chromosome 6, 25 cM from the centromere. The Ian4 mRNA contains two open reading frames (ORFs) separated by 5 nt. The first ORF has the potential to encode for a polypeptide of 67 amino acids without apparent homology to known proteins. The second ORF encodes a protein of 301 amino acids with a GTP/ATP-binding site in the N-terminus and a hydrophobic domain in the extreme C-terminus. The IAN-4 protein resides in the mitochondrial outer membrane and the last 20 amino acids are necessary for this localization. The IAN-4 protein has GTP-binding activity and shares sequence homology with a novel family of putative GTP-binding proteins: the immuno-associated nucleotide (IAN) family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously isolated the hpttg proto-oncogene, which is expressed in normal tissues containing proliferating cells and in several kinds of tumors. In fact, expression of hPTTG correlates with cell proliferation in a cell cycle-dependent manner. Recently it was reported that PTTG is a vertebrate analog of the yeast securins Pds1 and Cut2, which are involved in sister chromatid separation. Here we show that hPTTG binds to Ku, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). hPTTG and Ku associate both in vitro and in vivo and the DNA-PK catalytic subunit phosphorylates hPTTG in vitro. Furthermore, DNA double-strand breaks prevent hPTTG–Ku association and disrupt the hPTTG–Ku complexes, indicating that genome damaging events, which result in the induction of pathways that activate DNA repair mechanisms and halt cell cycle progression, might inhibit hPTTG–Ku interaction in vivo. We propose that hPTTG might connect DNA damage-response pathways with sister chromatid separation, delaying the onset of mitosis while DNA repair occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The C-terminal portion of adenovirus E1A suppresses ras-induced metastasis and tumorigenicity in mammalian cells; however, little is known about the mechanisms by which this occurs. In the simple eukaryote Saccharomyces cerevisiae, Ras2p, the homolog of mammalian h-ras, regulates mitogen-activated protein kinase (MAPK) and cyclic AMP-dependent protein kinase A (cAMP/PKA) signaling pathways to control differentiation from the yeast form to the pseudohyphal form. When expressed in yeast, the C-terminal region of E1A induced pseudohyphal differentiation, and this was independent of both the MAPK and cAMP/PKA signaling pathways. Using the yeast two-hybrid system, we identified an interaction between the C-terminal region of E1A and Yak1p, a yeast dual-specificity serine/threonine protein kinase that functions as a negative regulator of growth. E1A also physically interacts with Dyrk1A and Dyrk1B, two mammalian homologs of Yak1p, and stimulates their kinase activity in vitro. We further demonstrate that Yak1p is required in yeast to mediate pseudohyphal differentiation induced by Ras2p-regulated signaling pathways. However, pseudohyphal differentiation induced by the C-terminal region of E1A is largely independent of Yak1p. These data suggest that mammalian Yak1p-related kinases may be targeted by the E1A oncogene to modulate cell growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human synovial sarcoma has been shown to exclusively harbor the chromosomal translocation t(X;18) that produces the chimeric gene SYT-SSX. However, the role of SYT-SSX in cellular transformation remains unclear. In this study, we have established 3Y1 rat fibroblast cell lines that constitutively express SYT, SSX1, and SYT-SSX1 and found that SYT-SSX1 promoted growth rate in culture, anchorage-independent growth in soft agar, and tumor formation in nude mice. Deletion of the N-terminal 181 amino acids of SYT-SSX1 caused loss of its transforming activity. Furthermore, association of SYT-SSX1 with the chromatin remodeling factor hBRM/hSNF2α, which regulates transcription, was demonstrated in both SYT-SSX1-expressing 3Y1 cells and in the human synovial sarcoma cell line HS-SY-II. The binding region between the two molecules was shown to reside within the N-terminal 181 amino acids stretch (aa 1–181) of SYT-SSX1 and 50 amino acids (aa 156–205) of hBRM/hSNF2α and we found that the overexpression of this binding region of hBRM/hSNF2α significantly suppressed the anchorage-independent growth of SYT-SSX1-expressing 3Y1 cells. To analyze the transcriptional regulation by SYT-SSX1, we established conditional expression system of SYT-SSX1 and examined the gene expression profiles. The down-regulation of potential tumor suppressor DCC was observed among 1,176 genes analyzed by microarray analysis, and semi-quantitative reverse transcription–PCR confirmed this finding. These data clearly demonstrate transforming activity of human oncogene SYT-SSX1 and also involvement of chromatin remodeling factor hBRM/hSNF2α in human cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary carcinoma, a unique animal model for human bronchioalveolar carcinoma. We previously isolated a JSRV proviral clone and showed that it was both infectious and oncogenic. Thus JSRV is necessary and sufficient for the development of ovine pulmonary carcinoma, but no data are available on the mechanisms of transformation. Inspection of the JSRV genome reveals standard retroviral genes, but no evidence for a viral oncogene. However, an alternate ORF in pol (orf-x) might be a candidate for a transforming gene. We tested whether the JSRV genome might encode a transforming gene by transfecting an expression plasmid for JSRV [pCMVJS21, driven by the cytomegalovirus (CMV) immediate early promoter] into mouse NIH 3T3 cells. Foci of transformed cells appeared in the transfected cultures 2–3 weeks posttransfection; cloned transformants showed anchorage independence for growth, and they expressed JSRV RNA. These results indicate that the JRSV genome contains information with direct transforming potential for NIH 3T3 cells. Transfection of a mutated version of pCMVJS21 in which the orf-x protein was terminated by two stop codons also gave transformed foci. Thus, orf-x was eliminated as the candidate transforming gene. In addition, another derivative of pCMVJS21 (pCMVJS21ΔGP) in which the gag, pol (and orf-x) coding sequences were deleted also gave transformed foci. These results indicate that the envelope gene carries the transforming potential. This is an unusual example of a native retroviral structural protein with transformation potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The group C adenovirus E4orf6 protein has previously been shown to bind to the p53 cellular tumor suppressor protein and block its ability to activate transcription. Here we show that the E4orf6 protein blocks the induction of p53-mediated apoptosis when AT6 cells, which harbor a temperature-sensitive p53, are shifted to the permissive temperature. The E4orf6 protein does not, however, prevent the induction of apoptosis in p53-deficient H1299 cells by treatment with tumor necrosis factor alpha and cycloheximide. The E4orf6 protein also cooperates with the adenovirus E1A protein to transform primary baby rat kidney cells, and it cooperates with the adenovirus E1A plus E1B 19-kDa and E1B 55-kDa proteins to increase the number of baby rat kidney cell transformants and enhance the rate at which they arise. The level of p53 is substantially reduced in transformed cells expressing the E4orf6 protein in comparison to adenovirus transformants lacking it. The E4orf6 gene also accelerates tumor formation when transformed baby rat kidney cells are injected subcutaneously into the nude mouse, and it converts human 293 cells from nontumorigenic to tumorigenic in nude mice. In addition to the well-studied E1A and E1B oncogenes, group C adenoviruses harbor a third oncogene, E4orf6, which functions in some respects similarly to the E1B oncogene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroblasts derived from embryos homozygous for a disruption of the retinoblastoma gene (Rb) exhibit a shorter G1 than their wild-type counterparts, apparently due to highly elevated levels of cyclin E protein and deregulated cyclin-dependent kinase 2 (CDK2) activity. Here we demonstrate that the Rb-/- fibroblasts display higher levels of phosphorylated H1 throughout G1 with the maximum being 10-fold higher than that of the Rb+/+ fibroblasts. This profile of intracellular H1 phosphorylation corresponds with deregulated CDK2 activity observed in in vitro assays, suggesting that CDK2 may be directly responsible for the in vivo phosphorylation of H1. H1 phosphorylation has been proposed to lead to a relaxation of chromatin structure due to a decreased affinity of this protein for chromatin after phosphorylation. In accord with this, chromatin from the Rb-/- cells is more susceptible to micrococcal nuclease digestion than that from Rb+/+ fibroblasts. Increased H1 phosphorylation and relaxed chromatin structure have also been observed in cells expressing several oncogenes, suggesting a common mechanism in oncogene and tumor suppressor gene function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overexpression of the c-myc oncogene is associated with a variety of both human and experimental tumors, and cooperation of other oncogenes and growth factors with the myc family are critical in the evolution of the malignant phenotype. The interaction of hepatocyte growth factor (HGF) with c-myc during hepatocarcinogenesis in a transgenic mouse model has been analyzed. While sustained overexpression of c-myc in the liver leads to cancer, coexpression of HGF and c-myc in the liver delayed the appearance of preneoplastic lesions and prevented malignant conversion. Furthermore, tumor promotion by phenobarbital was completely inhibited in the c-myc/HGF double transgenic mice, whereas phenobarbital was an effective tumor promoter in the c-myc single transgenic mice. The results indicate that HGF may function as a tumor suppressor during early stages of liver carcinogenesis, and suggest the possibility of therapeutic application for this cytokine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A procedure of reversible immortalization of primary cells was devised by retrovirus-mediated transfer of an oncogene that could be subsequently excised by site-specific recombination. This study focused on the early stages of immortalization: global induction of proliferation and life span extension of cell populations. Comparative analysis of Cre/LoxP and FLP/FRT recombination in this system indicated that only Cre/LoxP operates efficiently in primary cells. Pure populations of cells in which the oncogene is permanently excised were obtained, following differential selection of the cells. Cells reverted to their preimmortalized state, as indicated by changes in growth characteristics and p53 levels, and their fate conformed to the telomere hypothesis of replicative cell senescence. By permitting temporary and controlled expansion of primary cell populations without retaining the transferred oncogene, this strategy may facilitate gene therapy manipulations of cells unresponsive to exogenous growth factors and make practical gene targeting by homologous recombination in somatic cells. The combination of retroviral transfer and site-specific recombination should also extend gene expression studies to situations previously inaccessible to experimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic instability is thought to be responsible for the numerous genotypic changes that occur during neoplastic transformation and metastatic progression. To explore the role of genetic instability at the level of point mutations during mammary tumor development and malignant progression, we combined transgenic mouse models of mutagenesis detection and oncogenesis. Bitransgenic mice were generated that carried both a bacteriophage lambda transgene to assay mutagenesis and a polyomavirus middle T oncogene, mammary gland-targeted expression of which led to metastatic mammary adenocarcinomas. We developed a novel assay for the detection of mutations in the lambda transgene that selects for phage containing forward mutations only in the lambda cII gene, using an hfl- bacterial host. In addition to the relative ease of direct selection, the sensitivity of this assay for both spontaneous and chemically induced mutations was comparable to the widely used mutational target gene, lambda lacI, making the cII assay an attractive alternative for mutant phage recovery for any lambda-based mouse mutagenesis assay system. The frequencies of lambda cII- mutants were not significantly different in normal mammary epithelium, primary mammary adenocarcinomas, and pulmonary metastases. The cII mutational spectra in these tissues consisted mostly of G/C-->A/T transitions, a large fraction of which occurred at CpG dinucleotides. These data suggest that, in this middle T oncogene model of mammary tumor progression, a significant increase in mutagenesis is not required for tumor development or for metastatic progression.