900 resultados para oestrus cycle
Resumo:
Transpolar voltages observed during traversals of the polar cap by the Defense Meteorological Satellite Program (DMSP) F-13 spacecraft during 2001 are analyzed using the expanding-contracting polar cap model of ionospheric convection. Each of the 10,216 passes is classified by its substorm phase or as a steady convection event (SCE) by inspection of the AE indices. For all phases, we detect a contribution to the transpolar voltage by reconnection in both the dayside magnetopause and in the crosstail current sheet. Detection of the IMF influence is 97% certain during quiet intervals and >99% certain during substorm/SCE growth phases but falls to 75% in substorm expansion phases: It is only 27% during SCEs. Detection of the influence of the nightside voltage is only 19% certain during growth phases, rising during expansion phases to a peak of 96% in recovery phases: During SCEs, it is >99%. The voltage during SCEs is dominated by the nightside, not the dayside, reconnection. On average, substorm expansion phases halt the growth phase rise in polar cap flux rather than reversing it. The main destruction of the excess open flux takes place during the 6- to 10-hour interval after the recovery phase (as seen in AE) and at a rate which is relatively independent of polar cap flux because the NENL has by then retreated to the far tail. The best estimate of the voltage associated with viscous-like transfer of closed field lines into the tail is around 10 kV.
Resumo:
A time series of the observed transport through an array of moorings across the Mozambique Channel is compared with that of six model runs with ocean general circulation models. In the observations, the seasonal cycle cannot be distinguished from red noise, while this cycle is dominant in the transport of the numerical models. It is found, however, that the seasonal cycles of the observations and numerical models are similar in strength and phase. These cycles have an amplitude of 5 Sv and a maximum in September, and can be explained by the yearly variation of the wind forcing. The seasonal cycle in the models is dominant because the spectral density at other frequencies is underrepresented. Main deviations from the observations are found at depths shallower than 1500 m and in the 5/y–6/y frequency range. Nevertheless, the structure of eddies in the models is close to the observed eddy structure. The discrepancy is found to be related to the formation mechanism and the formation position of the eddies. In the observations, eddies are frequently formed from an overshooting current near the mooring section, as proposed by Ridderinkhof and de Ruijter (2003) and Harlander et al. (2009). This causes an alternation of events at the mooring section, varying between a strong southward current, and the formation and passing of an eddy. This results in a large variation of transport in the frequency range of 5/y–6/y. In the models, the eddies are formed further north and propagate through the section. No alternation similar to the observations is observed, resulting in a more constant transport.
Resumo:
There is ongoing debate concerning the possible environmental and human health impacts of growing genetically modified (GM) crops. Here, we report the results of a life-cycle assessment (LCA) comparing the environmental and human health impacts of conventional sugar beet growing regimes in the UK and Germany with those that might be expected if GM herbicide-tolerant (to glyphosate) sugar beet is commercialized. The results presented for a number of environmental and human health impact categories suggest that growing the GM herbicide-tolerant crop would be less harmful to the environment and human health than growing the conventional crop, largely due to lower emissions from herbicide manufacture, transport and field operations. Emissions contributing to negative environmental impacts, such as global warming, ozone depletion, ecotoxicity of water and acidification and nutrification of soil and water, were much lower for the herbicide-tolerant crop than for the conventional crop. Emissions contributing to summer smog, toxic particulate matter and carcinogenicity, which have negative human health impacts, were also substantially lower for the herbicide-tolerant crop. The environmental and human health impacts of growing GM crops need to be assessed on a case-by-case basis using a holistic approach. LCA is a valuable technique for helping to undertake such assessments.
Resumo:
Life-Cycle Assessment (LCA) was used to assess the potential environmental and human health impacts of growing genetically-modified (GM), herbicide-tolerant sugar beet in the UK and Germany compared with conventional sugar beet varieties. The GM variety results in lower potential environmental impacts on global warming, airborne nutrification, ecotoxicity (of soil and water) and watercourse enrichment, and lower potential human health impacts in terms of production of toxic particulates, summer smog, carcinogens and ozone depletion. Although the overall contribution of GM sugar beet to reducing harmful emissions to the environment would be relatively small, the potential for GM crops to reduce pollution from agriculture, including diffuse water pollution, is highlighted.
Resumo:
The paper presents the methods and results of a life-cycle assessment (LCA) applied to the production of maize grain from a conventional variety compared with maize grain from a variety genetically modified to be herbicide tolerant and insect protected and to contain an enhanced oil and lysine content, and its impact when fed to broiler chickens. The findings show that there are both environmental and human health benefits of growing GM maize including lower impacts on global warming, ozone depletion, freshwater ecotoxicity and human toxicity. However, when considered in terms of the use of maize as a feed input to broiler chicken production, the benefits of the GM alternative become negligible compared to the use of conventional maize.
Resumo:
Ovarian follicle development continues in a wave-like manner during the bovine oestrous cycle giving rise to variation in the duration of ovulatory follicle development. The objectives of the present study were to determine whether a relationship exists between the duration of ovulatory follicle development and pregnancy rates following artificial insemination (AI) in dairy cows undergoing spontaneous oestrous cycles, and to identify factors influencing follicle turnover and pregnancy rate and the relationship between these two variables. Follicle development was monitored by daily transrectal ultrasonography from 10 days after oestrus until the subsequent oestrus in 158 lactating dairy cows. The cows were artificially inseminated following the second observed oestrus and pregnancy was diagnosed 35 days later. The predominant pattern of follicle development was two follicle waves (74.7%) with three follicle waves in 22.1% of oestrous cycles and four or more follicle waves in 3.2% of oestrous cycles. The interval from ovulatory follicle emergence to oestrus (EOI) was 3 days longer (P < 0.0001) in cows with two follicle waves than in those with three waves. Ovulatory follicles from two-wave oestrous cycles grew more slowly but were approximately 2 mm larger (P < 0.0001) on the day of oestrus. Twin ovulations were observed in 14.2% of oestrous cycles and occurred more frequently (P < 0.001) in three-wave oestrous cycles; consequently EOI was shorter in cows with twin ovulations. Overall, 57.0% of the cows were diagnosed pregnant 35 days after AI. Linear logistic regression analysis revealed an inverse relationship between EOI and the proportion of cows diagnosed pregnant, among all cows (n = 158; P < 0.01) and amongst those with single ovulations (n = 145; P < 0.05). Mean EOI was approximately I day shorter (P < 0.01) in cows that became pregnant than in non-pregnant cows; however, pregnancy rates did not differ significantly among cows with different patterns of follicle development. These findings confirm and extend previous observations in pharmacologically manipulated cattle and show, for the first time, that in dairy cows undergoing spontaneous oestrous cycles, natural variation in the duration of post-emergence ovulatory follicle development has a significant effect on pregnancy rate, presumably reflecting variation in oocyte developmental competence.
Resumo:
Unidentified heats contribute to declining fertility rates in English dairy herds. Several techniques have been advocated to improve heat detection rates. Despite demonstrable technical efficacy and cost-effectiveness, uptake is low. A study in South West England used the Theory of Reasoned Action (TORA) to explore dairy farmers' attitudes and beliefs towards heat detection techniques. Few farmers were convinced that following prescribed observation times, milk progesterone testing and using pedometers would fit their system or improve on their current heat detection practices. Perceived difficulty of using a technique was not a constraint on adoption. Without promotion that addresses identified barriers and drivers to adoption, little change in current practice can be expected. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Abstract 1.7.4
Resumo:
Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution.
Resumo:
In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G(2)/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G(2) regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G(2)/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the Go phase or asynchronously replicating cells. Our data suggested that IBV induces a G(2)/M phase arrest in infected cells to promote favorable conditions for viral replication.
Resumo:
Certain forkhead (FOX) transcription factors have been shown to play an intrinsic role in controlling cell cycle progression. In particular, the FoxO subclass has been shown to regulate cell cycle entry and exit, whereas the expression and activity of FoxM1 is important for the correct coupling of DNA synthesis to mitosis. In this chapter, I describe a method for measuring FoxO and FoxM1 transcription factor DNA binding in nuclear extracts from mammalian cells.
Resumo:
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.
Resumo:
Ovarian follicle development continues in a wave-like manner during the bovine oestrous cycle giving rise to variation in the duration of ovulatory follicle development. The objectives of the present study were to determine whether a relationship exists between the duration of ovulatory follicle development and pregnancy rates following artificial insemination (AI) in dairy cows undergoing spontaneous oestrous cycles, and to identify factors influencing follicle turnover and pregnancy rate and the relationship between these two variables. Follicle development was monitored by daily transrectal ultrasonography from 10 days after oestrus until the subsequent oestrus in 158 lactating dairy cows. The cows were artificially inseminated following the second observed oestrus and pregnancy was diagnosed 35 days later. The predominant pattern of follicle development was two follicle waves (74.7%) with three follicle waves in 22.1% of oestrous cycles and four or more follicle waves in 3.2% of oestrous cycles. The interval from ovulatory follicle emergence to oestrus (EOI) was 3 days longer (P < 0.0001) in cows with two follicle waves than in those with three waves. Ovulatory follicles from two-wave oestrous cycles grew more slowly but were approximately 2 mm larger (P < 0.0001) on the day of oestrus. Twin ovulations were observed in 14.2% of oestrous cycles and occurred more frequently (P < 0.001) in three-wave oestrous cycles; consequently EOI was shorter in cows with twin ovulations. Overall, 57.0% of the cows were diagnosed pregnant 35 days after AI. Linear logistic regression analysis revealed an inverse relationship between EOI and the proportion of cows diagnosed pregnant, among all cows (n = 158; P < 0.01) and amongst those with single ovulations (n = 145; P < 0.05). Mean EOI was approximately I day shorter (P < 0.01) in cows that became pregnant than in non-pregnant cows; however, pregnancy rates did not differ significantly among cows with different patterns of follicle development. These findings confirm and extend previous observations in pharmacologically manipulated cattle and show, for the first time, that in dairy cows undergoing spontaneous oestrous cycles, natural variation in the duration of post-emergence ovulatory follicle development has a significant effect on pregnancy rate, presumably reflecting variation in oocyte developmental competence.