966 resultados para nucleoid occlusion
Resumo:
OBJECTIVE: To evaluate the importance of flexible bronchoscopy in tracheostomy patients in the process of decannulation to assess the incidence and types of laryngotracheal injury and compare the presence of such lesions with clinical criteria used for decannulation. METHODS: We studied 51 tracheostomized patients aged between 19 and 87 years, with tracheal stent for a mean of 46 ± 28 days and with clinical criteria for decannulation. They were submitted to tracheostomy tube occlusion tolerance testfor 24 hours, and then to flexible bronchoscopy. We described and classified the diagnosed laryngotracheal changes. We compared the clinical criteria for decannulation indication with the bronchoscopy-diagnosed laryngotracheal injuries that contraindicated decannulation. We identified the factors that could interfere in decannulation and evaluated the importance of bronchoscopy as part of the process. RESULTS: Forty (80.4%) patients had laryngotracheal alterations. Of the 40 patients considered clinically fit to decannulation, eight (20%) (p = 0.0007) presented with laryngotracheal injuries at bronchoscopy that contraindicated the procedure. The most frequent laryngeal alteration was vocal cords lesion, in 15 (29%) individuals, and granuloma, the most prevalent tracheal lesion, in 14 (27.5%) patients. CONCLUSION: flexible bronchoscopy showed a large number of laryngotracheal injuries, the most frequent being the vocal cords injury in the larynx and the granuloma in the trachea, which contributed to increase the decannulation procedure safety.
Resumo:
The Galea spixii inhabits semiarid vegetation of Caatinga in the Brazilian Northeast. They are bred in captivity for the development of researches on the biology of reproduction. Therefore, the aim of this study is characterize the estrous cycle of G. spixii, in order to provide information to a better knowledge of captive breeding of the species. The estrous cycle was monitored by vaginal exfoliative cytology in 12 adult females. After the detection of two complete cycles in each animal, the same were euthanized. Then, histological study of the vaginal epithelium, with three females in each phase of the estrous cycle was performed; five were paired with males for performing the control group for estrous cycle phases, and three other were used to monitor the formation and rupture of vaginal closure membrane. By vaginal exfoliative cytology, predominance of superficial cells in estrus, large intermediate cells in proestrus, intermediate and parabasal cells, with neutrophils, in diestrus and metestrus respectively was found. Estrus was detected by the presence of spermatozoa in the control group. By histology, greater proliferation of the vaginal epithelium in proestrus was observed. We conclude that the estrous cycle of G. spixii lasts 15.8 ± 1.4 days and that the vaginal closure membrane develops until complete occlusion of the vaginal ostium, breaking after few days. Future studies may reveal the importance of this fact for the reproductive success of this animal.
Resumo:
Global illumination algorithms are at the center of realistic image synthesis and account for non-trivial light transport and occlusion within scenes, such as indirect illumination, ambient occlusion, and environment lighting. Their computationally most difficult part is determining light source visibility at each visible scene point. Height fields, on the other hand, constitute an important special case of geometry and are mainly used to describe certain types of objects such as terrains and to map detailed geometry onto object surfaces. The geometry of an entire scene can also be approximated by treating the distance values of its camera projection as a screen-space height field. In order to shadow height fields from environment lights a horizon map is usually used to occlude incident light. We reduce the per-receiver time complexity of generating the horizon map on N N height fields from O(N) of the previous work to O(1) by using an algorithm that incrementally traverses the height field and reuses the information already gathered along the path of traversal. We also propose an accurate method to integrate the incident light within the limits given by the horizon map. Indirect illumination in height fields requires information about which other points are visible to each height field point. We present an algorithm to determine this intervisibility in a time complexity that matches the space complexity of the produced visibility information, which is in contrast to previous methods which scale in the height field size. As a result the amount of computation is reduced by two orders of magnitude in common use cases. Screen-space ambient obscurance methods approximate ambient obscurance from the depth bu er geometry and have been widely adopted by contemporary real-time applications. They work by sampling the screen-space geometry around each receiver point but have been previously limited to near- field effects because sampling a large radius quickly exceeds the render time budget. We present an algorithm that reduces the quadratic per-pixel complexity of previous methods to a linear complexity by line sweeping over the depth bu er and maintaining an internal representation of the processed geometry from which occluders can be efficiently queried. Another algorithm is presented to determine ambient obscurance from the entire depth bu er at each screen pixel. The algorithm scans the depth bu er in a quick pre-pass and locates important features in it, which are then used to evaluate the ambient obscurance integral accurately. We also propose an evaluation of the integral such that results within a few percent of the ray traced screen-space reference are obtained at real-time render times.
Resumo:
The hemodynamic responses to acute (45 min) partial aortic constriction were studied in conscious intact (N = 7) or sinoaortic denervated (SAD) adult male Wistar rats (280-350 g, N = 7) implanted with carotid and femoral arterial catheters, a pneumatic cuff around the abdominal aorta and a pulsed Doppler flow probe to measure changes in aortic resistance. In addition, the hypertensive response and the reflex bradycardia elicited by total (N = 8) vs partial (N = 7) aortic constriction (monitored by maintenance of the pressure distal to the cuff at 50 mmHg) were compared in two other groups of intact rats. Intact rats presented a smaller hypertensive response (26 to 40% above basal level) to partial aortic constriction than SAD rats (38 to 58%). The calculated change in aortic resistance imposed by constriction of the aorta increased progressively only in intact rats, but was significantly smaller (193 to 306%) than that observed (501 to 591%) in SAD rats. Intact rats showed a significant bradycardia (23 to 26% change in basal heart rate) throughout coarctation, whereas the SAD rats did not (1 to 3%). Partial or total occlusion of the aorta induced similar hypertensive responses (37-38% vs 24-30% for total constriction) as well as reflex bradycardia (-15 to -17% vs -22 to -33%) despite a greater gradient in pressure (97-98 vs 129-140 mmHg) caused by total constriction. The present data indicate that the integrity of the baroreflex in intact rats can cause the hypertensive response to level off at a lower value than in SAD rats despite a progressive increase in aortic resistance. In addition, they also indicate that the degree of partial aortic constriction by maintenance of the pressure distal to the cuff at 50 mmHg already elicits a maximal stimulation of the arterial baroreflex
Resumo:
The presence of abnormalities of the respiratory center in obstructive sleep apnea (OSA) patients and their correlation with polysomnographic data are still a matter of controversy. Moderately obese, sleep-deprived OSA patients presenting daytime hypersomnolence, with normocapnia and no clinical or spirometric evidence of pulmonary disease, were selected. We assessed the ventilatory control and correlated it with polysomnographic data. Ventilatory neuromuscular drive was evaluated in these patients by measuring the ventilatory response (VE), the inspiratory occlusion pressure (P.1) and the ventilatory pattern (VT/TI, TI/TTOT) at rest and during submaximal exercise, breathing room air. These analyses were also performed after inhalation of a hypercapnic mixture of CO2 (DP.1/DPETCO2, DVE/DPETCO2). Average rest and exercise ventilatory response (VE: 12.2 and 32.6 l/min, respectively), inspiratory occlusion pressure (P.1: 1.5 and 4.7 cmH2O, respectively), and ventilatory pattern (VT/TI: 0.42 and 1.09 l/s; TI/TTOT: 0.47 and 0.46 l/s, respectively) were within the normal range. In response to hypercapnia, the values of ventilatory response (DVE/DPETCO2: 1.51 l min-1 mmHg-1) and inspiratory occlusion pressure (DP.1/DPETCO2: 0.22 cmH2O) were normal or slightly reduced in the normocapnic OSA patients. No association or correlation between ventilatory neuromuscular drive and ventilatory pattern, hypersomnolence score and polysomnographic data was found; however a significant positive correlation was observed between P.1 and weight. Our results indicate the existence of a group of normocapnic OSA patients who have a normal awake neuromuscular ventilatory drive at rest or during exercise that is partially influenced by obesity
Resumo:
The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs). Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac) from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV). The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.
Resumo:
In the central nervous system, magnesium ion (Mg2+) acts as an endogenous modulator of N-methyl-D-aspartate (NMDA)-coupled calcium channels, and may play a major role in the pathomechanisms of ischemic brain damage. In the present study, we investigated the effects of magnesium chloride (MgCl2, 2.5, 5.0 or 7.5 mmol/kg), either alone or in combination with diazepam (DZ), on ischemia-induced hippocampal cell death. Male Wistar rats (250-300 g) were subjected to transient forebrain ischemia for 15 min using the 4-vessel occlusion model. MgCl2 was applied systemically (sc) in single (1x, 2 h post-ischemia) or multiple doses (4x, 1, 2, 24 and 48 h post-ischemia). DZ was always given twice, at 1 and 2 h post-ischemia. Thus, ischemia-subjected rats were assigned to one of the following treatments: vehicle (0.1 ml/kg, N = 34), DZ (10 mg/kg, N = 24), MgCl2 (2.5 mmol/kg, N = 10), MgCl2 (5.0 mmol/kg, N = 17), MgCl2 (7.5 mmol/kg, N = 9) or MgCl2 (5 mmol/kg) + DZ (10 mg/kg, N = 14). Seven days after ischemia the brains were analyzed histologically. Fifteen minutes of ischemia caused massive pyramidal cell loss in the subiculum (90.3%) and CA1 (88.4%) sectors of the hippocampus (P<0.0001, vehicle vs sham). Compared to the vehicle-treated group, all pharmacological treatments failed to attenuate the ischemia-induced death of both subiculum (lesion: 86.7-93.4%) and CA1 (lesion: 85.5-91.2%) pyramidal cells (P>0.05). Both DZ alone and DZ + MgCl2 reduced rectal temperature significantly (P<0.05). No animal death was observed after drug treatment. These data indicate that exogenous magnesium, when administered systemically post-ischemia even in different multiple dose schedules, alone or with diazepam, is not useful against the histopathological effects of transient global cerebral ischemia in rats.
Resumo:
Brain ischemia followed by reperfusion causes neuronal death related to oxidative damage. Furthermore, it has been reported that subjects suffering from ischemic cerebrovascular disorders exhibit changes in circulating platelet aggregation, a characteristic that might be important for their clinical outcome. In the present investigation we studied tert-butyl hydroperoxide-initiated plasma chemiluminescence and thiol content as measures of peripheral oxidative damage in naive and preconditioned rats submitted to forebrain ischemia produced by the 4-vessel occlusion method. Rats were submitted to 2 or 10 min of global transient forebrain ischemia followed by 60 min or 1, 2, 5, 10 or 30 days of reperfusion. Preconditioned rats were submitted to a 10-min ischemic episode 1 day after a 2-min ischemic event (2 + 10 min), followed by 60 min or 1 or 2 days of reperfusion. It has been demonstrated that such preconditioning protects against neuronal death in rats and gerbils submitted to a lethal (10 min) ischemic episode. The results show that both 2 and 10 min of ischemia cause an increase of plasma chemiluminescence when compared to control and sham rats. In the 2-min ischemic group, the effect was not present after reperfusion. In the 10-min ischemic group, the increase was present up to 1 day after recirculation and values returned to control levels after 2 days. However, rats preconditioned to ischemia (2 + 10 min) and reperfusion showed no differences in plasma chemiluminescence when compared to controls. We also analyzed plasma thiol content since it has been described that sulfhydryl (SH) groups significantly contribute to the antioxidant capacity of plasma. There was a significant decrease of plasma thiol content after 2, 10 and 2 + 10 min of ischemia followed by reperfusion when compared to controls. We conclude that ischemia may cause, along with brain oxidative damage and cell death, a peripheral oxidative damage that is reduced by the preconditioning phenomenon.
Resumo:
Targeted disruption of the neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) genes has led to knockout mice that lack these isoforms. These animal models have been useful to study the roles of nitric oxide (NO) in physiologic processes. nNOS knockout mice have enlarged stomachs and defects in the inhibitory junction potential involved in gastrointestinal motility. eNOS knockout mice are hypertensive and lack endothelium-derived relaxing factor activity. When these animals are subjected to models of focal ischemia, the nNOS mutant mice develop smaller infarcts, consistent with a role for nNOS in neurotoxicity following cerebral ischemia. In contrast, eNOS mutant mice develop larger infarcts, and show a more pronounced hemodynamic effect of vascular occlusion. The knockout mice also show that nNOS and eNOS isoforms differentially modulate the release of neurotransmitters in various regions of the brain. eNOS knockout mice respond to vessel injury with greater neointimal proliferation, confirming that reduced NO levels seen in endothelial dysfunction change the vessel response to injury. Furthermore, eNOS mutant mice still show a protective effect of female gender, indicating that the mechanism of this protection cannot be limited to upregulation of eNOS expression. The eNOS mutant mice also prove that eNOS modulates the cardiac contractile response to ß-adrenergic agonists and baseline diastolic relaxation. Atrial natriuretic peptide, upregulated in the hearts of eNOS mutant mice, normalizes cGMP levels and restores normal diastolic relaxation.
Resumo:
We prospectively evaluated the effects of positive end-expiratory pressure (PEEP) on the respiratory mechanical properties and hemodynamics of 10 postoperative adult cardiac patients undergoing mechanical ventilation while still anesthetized and paralyzed. The respiratory mechanics was evaluated by the inflation inspiratory occlusion method and hemodynamics by conventional methods. Each patient was randomized to a different level of PEEP (5, 10 and 15 cmH2O), while zero end-expiratory pressure (ZEEP) was established as control. PEEP of 15-min duration was applied at 20-min intervals. The frequency dependence of resistance and the viscoelastic properties and elastance of the respiratory system were evaluated together with hemodynamic and respiratory indexes. We observed a significant decrease in total airway resistance (13.12 ± 0.79 cmH2O l-1 s-1 at ZEEP, 11.94 ± 0.55 cmH2O l-1 s-1 (P<0.0197) at 5 cmH2O of PEEP, 11.42 ± 0.71 cmH2O l-1 s-1 (P<0.0255) at 10 cmH2O of PEEP, and 10.32 ± 0.57 cmH2O l-1 s-1 (P<0.0002) at 15 cmH2O of PEEP). The elastance (Ers; cmH2O/l) was not significantly modified by PEEP from zero (23.49 ± 1.21) to 5 cmH2O (21.89 ± 0.70). However, a significant decrease (P<0.0003) at 10 cmH2O PEEP (18.86 ± 1.13), as well as (P<0.0001) at 15 cmH2O (18.41 ± 0.82) was observed after PEEP application. Volume dependence of viscoelastic properties showed a slight but not significant tendency to increase with PEEP. The significant decreases in cardiac index (l min-1 m-2) due to PEEP increments (3.90 ± 0.22 at ZEEP, 3.43 ± 0.17 (P<0.0260) at 5 cmH2O of PEEP, 3.31 ± 0.22 (P<0.0260) at 10 cmH2O of PEEP, and 3.10 ± 0.22 (P<0.0113) at 15 cmH2O of PEEP) were compensated for by an increase in arterial oxygen content owing to shunt fraction reduction (%) from 22.26 ± 2.28 at ZEEP to 11.66 ± 1.24 at PEEP of 15 cmH2O (P<0.0007). We conclude that increments in PEEP resulted in a reduction of both airway resistance and respiratory elastance. These results could reflect improvement in respiratory mechanics. However, due to possible hemodynamic instability, PEEP should be carefully applied to postoperative cardiac patients.
Resumo:
The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation.
Resumo:
To study the relationship between the sympathetic nerve activity and hemodynamic alterations in obesity, we simultaneously measured muscle sympathetic nerve activity (MSNA), blood pressure, and forearm blood flow (FBF) in obese and lean individuals. Fifteen normotensive obese women (BMI = 32.5 ± 0.5 kg/m²) and 11 age-matched normotensive lean women (BMI = 22.7 ± 1.0 kg/m²) were studied. MSNA was evaluated directly from the peroneal nerve by microneurography, FBF was measured by venous occlusion plethysmography, and blood pressure was measured noninvasively by an autonomic blood pressure cuff. MSNA was significantly increased in obese women when compared with lean control women. Forearm vascular resistance and blood pressure were significantly higher in obese women than in lean women. FBF was significantly lower in obese women. BMI was directly and significantly correlated with MSNA, blood pressure, and forearm vascular resistance levels, but inversely and significantly correlated with FBF levels. Obesity increases sympathetic nerve activity and muscle vascular resistance, and reduces muscle blood flow. These alterations, taken together, may explain the higher blood pressure levels in obese women when compared with lean age-matched women.
Resumo:
The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.
Resumo:
We evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) on post-ischemic function in isolated hearts from adult male Wistar rats perfused according to the Langendorff technique. Local ischemia was induced by coronary ligation for 15 min. After ischemia, hearts were reperfused for 30 min. Addition of angiotensin II (Ang II) (0.20 nM, N = 10) or Ang-(1-7) (0.22 nM, N = 10) to the Krebs-Ringer perfusion solution (KRS) before the occlusion did not modify diastolic or systolic tension, heart rate or coronary flow (basal values for Ang-(1-7)-treated hearts: 0.72 ± 0.08 g, 10.50 ± 0.66 g, 216 ± 9 bpm, 5.78 ± 0.60 ml/min, respectively). During the period of occlusion, the coronary flow, heart rate and systolic tension decreased (values for Ang-(1-7)-treated hearts: 2.83 ± 0.24 ml/min, 186 ± 7 bpm, 6.95 ± 0.45 g, respectively). During reperfusion a further decrease in systolic tension was observed in control (4.95 ± 0.60 g) and Ang II-treated hearts (4.35 ± 0.62 g). However, in isolated hearts perfused with KRS containing Ang-(1-7) the further reduction of systolic tension during the reperfusion period was prevented (7.37 ± 0.68 g). The effect of Ang-(1-7) on the systolic tension was blocked by the selective Ang-(1-7) antagonist A-779 (2 nM, N = 9), by the bradykinin B2 antagonist HOE 140 (100 nM, N = 10), and by indomethacin pretreatment (5 mg/kg, ip, N = 8). Pretreatment with L-NAME (30 mg/kg, ip, N = 8) did not change the effect of Ang-(1-7) on systolic tension (6.85 ± 0.61 g). These results show that Ang-(1-7) at low concentration (0.22 nM) improves myocardial function (systolic tension) in ischemia/reperfusion through a receptor-mediated mechanism involving release of bradykinin and prostaglandins.
Resumo:
The neuroprotective effect of the immunosuppressant agent FK506 was evaluated in rats after brain ischemia induced for 15 min in the 4-vessel occlusion model. In the first experimental series, single doses of 1.0, 3.0 or 6.0 mg FK506/kg were given intravenously (iv) immediately after ischemia. In the second series, FK506 (1.0 mg/kg) was given iv at the beginning of reperfusion, followed by doses applied intraperitoneally (ip) 6, 24, 48, and 72 h post-ischemia. The same protocol was used in the third series except that all 5 doses were given iv. Damage to the hippocampal field CA1 was assessed 7 or 30 days post-ischemia on three different stereotaxic planes along the septotemporal axis of the hippocampus. Ischemia caused marked neurodegeneration on all planes (P<0.001). FK506 failed to provide neuroprotection to CA1 both when applied iv as a single dose of 1.0, 3.0 or 6.0 mg/kg (experiment 1), and after five iv injections of 1.0 mg/kg (experiment 3). In contrast, the repeated administration of FK506 combining iv plus ip administration reduced CA1 cell death on all stereotaxic planes both 7 and 30 days post-ischemia (experiment 2; P<=0.01). Compared to vehicle alone, FK506 reduced rectal temperature in a dose-dependent manner (P<=0.05); however, this effect did not alter normothermia (37ºC). FK506 reduced ischemic brain damage, an effect sustained over time and apparently dependent on repeated doses and on delivery route. The present data extend previous findings on the rat 4-vessel occlusion model, further supporting the possible use of FK506 in the treatment of ischemic brain damage.