938 resultados para near optical axis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first experimental measurements on the spectral modification of type IA fibre Bragg gratings, incorporated in an optical network, which result from the use of high-power, near-infrared lasers. The fibre grating properties are modified in a controlled manner by exploiting the characteristics of the inherent 1400 nm absorption band of the optical fibre, which grows in strength during the type IA grating inscription. If the fibre network is illuminated with a high-power laser, having an emission wavelength coincident with the absorption band, the type IA centre wavelength and chirp can be modified. Furthermore, partial grating erasure is demonstrated. This has serious implications when using type IA gratings in an optical network, as their spectrum can be modified using purely optical methods (no external heating source acts on the fibre), and to their long-term stability as the grating is shown to decay. Conversely, suitably stabilized gratings can be spectrally tailored, for tuning fibre lasers or edge filter modification in sensing applications, by purely optical means. © 2006 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBG) in multimode fibre (MMF) has been side-detected with high spatial spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the use of arrayed waveguide gratings (AWGs) in the interrogation of fiber Bragg gratings (FBGs) for dynamic strain measurement. The ratiometric AWG output was calibrated in a static deflection experiment over a ±200 με range. Dynamic strain measurement was demonstrated with a FBG in a conventional single-mode fiber mounted on the surface of a vibrating cantilever and on a piezoelectric actuator, giving a resolution of 0.5 με at 2.4 kHz. We present results of this technique extended to measure the dynamic differential strain between two FBG pairs within a multicore fiber. An arbitrary cantilever oscillation of the multicore fiber was determined from curvature measurements in two orthogonal axes at 1125 Hz with a resolution of 0.05 m-1. © 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally investigate the channel estimation and compensation in a chromatic dispersion (CD) limited 20Gbit/s optical fast orthogonal frequency division multiplexing (F-OFDM) system with up to 840km transmission. It is shown that symmetric extension based guard interval (GI) is required to enable CD compensation using one-tap equalizers. As few as one optical F-OFDM symbol with four and six pilot tones per symbol can achieve near-optimal channel estimation and compensation performance for 600km and 840km respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmission loss in polymer optical fiber (POF) is much higher than that in silica fiber. Very strong absorption bands dominate throughout the visible and near infrared. Optical absorption increases the internal temperature of the polymer fiber and reduces the wavelength of any POF Bragg grating (POFBG) inscribed within the fiber. In this letter, we have investigated the wavelength drift of FBGs inscribed in poly(methyl methacrylate)-based fiber under illumination at different wavelengths. The experiments have shown that the characteristic wavelength of such a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fiber is established, depending on the surrounding humidity, optical power applied, and operation wavelength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an accelerometer based upon a simple fibre cantilever constructed from a short length of multicore fibre(MCF) containing fibre Bragg gratings (FBGs). Two-axis measurement is demonstrated up to 3 kHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inscription of Bragg gratings has been demonstrated in PMMA-based polymer optical fibre. The water affinity of PMMA can introduce significant wavelength change in a polymer optical fibre Bragg grating (POFBG). In polymer optical fibre losses are much higher than with silica fibre. Very strong absorption bands related to higher harmonics of vibrations of the C-H bond dominate throughout the visible and near infrared. Molecular vibration in substances generates heat, which is referred to as the thermal effect of molecular vibration. This means that a large part of the absorption of optical energy in those spectral bands will convert into thermal energy, which eventually drives water content out of the polymer fibre and reduces the wavelength of POFBG. In this work we have investigated the wavelength stability of POFBGs in different circumstances. The experiment has shown that the characteristic wavelength of a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fibre is established, depending on the initial water content inside the fibre, the surrounding humidity, the optical power applied, and the fibre size. Our investigation has shown that POFBGs operating at around 850 nm show much smaller wavelength reduction than those operating at around 1550 nm in the same fibre; POFBGs with different diameters show different changes; POFBGs powered by a low level light source, or operating in a very dry environment are least affected by this thermal effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have measured the optical phase sensitivity of fiber based on poly(methyl methacrylate) under near-single-mode conditions at 632.8 nm wavelength. The elongation sensitivity is 131±3 × 105 rad m-1 and the temperature sensitivity is -212±26 rad m -1 K-1. These values are somewhat larger than those for silica fiber and are consistent with the values expected on the basis of the bulk polymer properties. © 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present the design and fabrication of multi-notch optical fibre Bragg gratings for suppressing OH emission lines in the near infrared spectra of the night sky for astrophysical applications. We demonstrate a novel approach of fabricating 2, 3 and 5-notch filters using the phase mask technology, which show a good match with the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review is concerned with nanoscale effects in highly transparent dielectric photonic structures fabricated from optical fibers. In contrast to those in plasmonics, these structures do not contain metal particles, wires, or films with nanoscale dimensions. Nevertheless, a nanoscale perturbation of the fiber radius can significantly alter their performance. This paper consists of three parts. The first part considers propagation of light in thin optical fibers (microfibers) having the radius of the order of 100 nanometers to 1 micron. The fundamental mode propagating along a microfiber has an evanescent field which may be strongly expanded into the external area. Then, the cross-sectional dimensions of the mode and transmission losses are very sensitive to small variations of the microfiber radius. Under certain conditions, a change of just a few nanometers in the microfiber radius can significantly affect its transmission characteristics and, in particular, lead to the transition from the waveguiding to non-waveguiding regime. The second part of the review considers slow propagation of whispering gallery modes in fibers having the radius of the order of 10–100 microns. The propagation of these modes along the fiber axis is so slow that they can be governed by extremely small nanoscale changes of the optical fiber radius. This phenomenon is exploited in SNAP (surface nanoscale axial photonics), a new platform for fabrication of miniature super-low-loss photonic integrated circuits with unprecedented sub-angstrom precision. The SNAP theory and applications are overviewed. The third part of this review describes methods of characterization of the radius variation of microfibers and regular optical fibers with sub-nanometer precision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we have extended fibre grating devices in to mid-IR range. Fibre Bragg gratings (FBGs) and long-period gratings (LPGs) with spectral responses from near-IR (800nm) to mid-IR ( ∼ 2μm) have been demonstrated with transmission loss as strong as 10-20dB. 2μm FBG and LPG showed temperature and refractive index (RI) sensitivities of ∼ 91pm/°C and 357nm/RIU respectively. Finally, we have performed a bio sensing experiment by monitoring the degradation of foetal bovine serum at room temperature. The results encouragingly show that the mid-IR LPGs can be an ideal biosensor platform as they have high RI sensitivity and can be used to detect concentration change of bio-samples. © 2012 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two blue (450 nm) light–emitting diodes (LED), which only differ in top p-GaN layer growth conditions, were comparatively investigated. I-V, C-V, TLM, Electroluminescence (EL) and Photoluminescence (PL) techniques were applied to clarify a correlation between MOCVD carrier gas and internal properties. The A-structure grown in the pure N2 environment demonstrated better parameters than the B-structure grown in the N2/H2 (1:1) gas mixture. The mixed growth atmosphere leaded to an increase of sheet resistances of p-GaN layer. EL and PL measurements confirmed the advantage of the pure N2 utilization, and C(VR) measurement pointed the increase of static charge concentration near the p-GaN interface in the B structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectral properties of long-period gratings (LPGs) fabricated in photonic crystal fibers using femtosecond laser pulses by the point-by-point technique, without oil-immersion of the fiber, are investigated in detail. Postfabrication spectral monitoring at room temperature showed significant long-term instability of the gratings and stable spectra only after 600 h. The stabilized spectral properties of the gratings improved with increasing annealing temperature. The observed changes in resonant wavelength, optical strength, and grating birefringence were correlated to the laser inscription energy and were further used to study the mechanism of femtosecond inscription. Furthermore, the femtosecond-laser inscribed LPGs were compared to electric-arc fabricated LPGs. Comparison of experimental results with theoretical models of LPGs and laser propagation during inscription indicate that the major processes responsible for the index change are permanent compaction and thermally induced strain, the latter can be significantly changed through annealing. © 2011 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present comprehensive design rules to optimize the process of spectral compression arising from nonlinear pulse propagation in an optical fiber. Extensive numerical simulations are used to predict the performance characteristics of the process as well as to identify the optimal operational conditions within the space of system parameters. It is shown that the group velocity dispersion of the fiber is not detrimental and, in fact, helps achieve optimum compression. We also demonstrate that near-transform-limited rectangular and parabolic pulses can be generated in the region of optimum compression.