998 resultados para mundo real


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partindo da recente intervenção anglo-americana no Iraque, o presente artigo inicia um debate acerca do papel desempenhado pelas organizações multilaterais no mundo atual. Questionando inicialmente a real eficácia dessas organizações, o autor conclui que seu processo de consolidação não é linear, estando sujeito a retrocessos, mas afirma que a continuidade da diplomacia multilateral não pode ser abandonada.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A espécie Coffea arabica L é cultivada em todas as regiões cafeeiras do Estado de Minas Gerais, com predominância dos cultivares Catuaí e Mundo Novo, por seu vigor vegetativo, alto potencial produtivo e boa qualidade de bebida. Visando a identificar e selecionar progênies de cafeeiro com boas características agronômicas, foi instalado e conduzido um experimento na Fazenda Experimental da EPAMIG, no município de Três Pontas, MG. Foram avaliadas 39 progênies na 4ª geração de autofecundação, após o 2º retrocruzamento entre 'Catuaí' e 'Mundo Novo' (genitor recorrente), desenvolvidas pelo programa de melhoramento genético da Epamig. Os cultivares Catuaí Vermelho MG 99, Rubi MG 1192 e Acaiá Cerrado MG 1474 foram utilizados como testemunhas. Foram analisadas as características: produção de café beneficiado em sc.ha-1 de oito safras (1998/1999 a 2005/2006), vigor vegetativo, percentagem de frutos chochos e classificação quanto à peneira. Ficou evidente que existe variabilidade genética dentro do grupo de progênies estudadas. As maiores produtividades foram encontradas na sétima e oitava colheita. As progênies 1189-9-80-1 e 1189-9-80-3 apresentaram melhor desempenho, em todas as características avaliadas e serão selecionadas para futuros trabalhos de melhoramento genético, sendo lançadas como cultivar ou utilizadas em hibridações.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Once delighted by the moving image advent as a new method of realistically presenting reality, the viewer has been reposition himself towards the audiovisual contents he consumes, as he is given the opportunity to create and share his own perspective of that reality. We are living in a new technological setting, governed mainly by factors of interactivity, digital systems and technological convergence. The research project that we will present in this paper focuses on the subject of participatory media and the way cultural institutions are increasingly facing the inevitability of a profound revision of their traditional parameters of unidirectional communication, given the increasing availability of tools for audiovisual production as well as the diversity of networked communication contexts. The Serralves Foundation with its Museum of Contemporary Art, in Porto, Portugal, was the subject of a fi rst study of an empirical nature: a series of audiovisual objects were developed, in order to generate material for analysis and proposition. In this new stage of the project, our aim is to identify new procedures and practices that may be effectively implemented within the institutional universe. We intend to propose effi cient audiovisual communication contexts, including the maximizing of the relationship between institutions and audiences regarding dimensions that are traditionally outside the institutional radar: identity, narrative and affection. The project is currently in the process of surveying and categorization, with the aim of producing a map of different vocations and positions of the various institutions in regards to the aforementioned issues, which require participatory communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O desenvolvimento de personagens digitais tridimensionais1 na área da animação, a constante procura por soluções tecnológicas convincentes, aliado a uma estética própria, tem contribuído para o sucesso e afirmação da animação tridimensional, na indústria do entretenimento. Contudo, toda a obra que procura ou explora a vertente digital/3D, torna-se ‘vitima’ das limitações do render2 aplicado a uma sequência de imagens, devido ao aumento dos custos financeiros e humanos, assim como da influência e dificuldade implicadas no cumprimento dos objectivos e prazos. O tempo real tem assumido, cada vez mais, um papel predominante na indústria da animação interactiva. Com a evolução da tecnologia surgiu a necessidade de procurar a metodologia apropriada que sirva de alavanca para o desenvolvimento de animações 3D em tempo real, através de softwares open-source ou de baixo orçamento, para a redução de custos, que possibilite simultaneamente descartar qualquer dependência do render na animação 3D. O desenvolvimento de personagens em tempo real, possibilita o surgimento de uma nova abordagem: a interactividade na arte de animar. Esta possibilita a introdução de um vasto leque de novas aplicações e consequentemente, contribui para o aumento do interesse e curiosidade por parte do espectador. No entanto, a inserção, implementação e (ab)uso da tecnologia na área da animação, levanta questões atuais sobre qual o papel do animador. Esta dissertação procura analisar estes aspectos, dando apoio ao projecto de animação 3D em tempo real, denominado ‘PALCO’.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A evapotranspiração define a perda total de água do sistema solo-planta para a atmosfera. Nas áreas agrícolas, particularmente onde se pratica algum tipo de irrigação, a determinação da evapotranspiração, por via de sensoriamento remoto, vem ganhando cada vez mais importância, pois possibilita identificar a eficiência com que a água tem sido utilizada. Nesse contexto, este trabalho tem o objetivo de determinar a evapotranspiração real diária (ETr diária), com a utilização de produtos do sensor MODIS, nas sub-bacias do Ribeirão Entre Ribeiros e Rio Preto, que ficam entre os Estados de Goiás e Minas Gerais. O SEBAL (Surface Energy Balance Algorithm for Land) foi utilizado para a obtenção da ETr diária em quatro dias diferentes, no período de julho a outubro de 2007. Os resultados encontrados foram compatíveis com os citados em outras literaturas e a comparação entre a evapotranspiração, obtida pelo SEBAL, e a evapotranspiração da cultura (ETc) demonstraram que esse algoritmo pode ser utilizado como boa opção para determinar, com a utilização de produtos do sensor MODIS, a evapotranspiração diária nas condições das sub-bacias do ribeirão Entre Ribeiros e rio Preto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: This work presents detailed experimental performance results from tests executed in the hospital environment for Health Monitoring for All (HM4All), a remote vital signs monitoring system based on a ZigBee® (ZigBee Alliance, San Ramon, CA) body sensor network (BSN). MATERIALS AND METHODS: Tests involved the use of six electrocardiogram (ECG) sensors operating in two different modes: the ECG mode involved the transmission of ECG waveform data and heart rate (HR) values to the ZigBee coordinator, whereas the HR mode included only the transmission of HR values. In the absence of hidden nodes, a non-beacon-enabled star network composed of sensing devices working on ECG mode kept the delivery ratio (DR) at 100%. RESULTS: When the network topology was changed to a 2-hop tree, the performance degraded slightly, resulting in an average DR of 98.56%. Although these performance outcomes may seem satisfactory, further investigation demonstrated that individual sensing devices went through transitory periods with low DR. Other tests have shown that ZigBee BSNs are highly susceptible to collisions owing to hidden nodes. Nevertheless, these tests have also shown that these networks can achieve high reliability if the amount of traffic is kept low. Contrary to what is typically shown in scientific articles and in manufacturers' documentation, the test outcomes presented in this article include temporal graphs of the DR achieved by each wireless sensor device. CONCLUSIONS: The test procedure and the approach used to represent its outcomes, which allow the identification of undesirable transitory periods of low reliability due to contention between devices, constitute the main contribution of this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Precise needle puncture of renal calyces is a challenging and essential step for successful percutaneous nephrolithotomy. This work tests and evaluates, through a clinical trial, a real-time navigation system to plan and guide percutaneous kidney puncture. Methods: A novel system, entitled i3DPuncture, was developed to aid surgeons in establishing the desired puncture site and the best virtual puncture trajectory, by gathering and processing data from a tracked needle with optical passive markers. In order to navigate and superimpose the needle to a preoperative volume, the patient, 3D image data and tracker system were previously registered intraoperatively using seven points that were strategically chosen based on rigid bone structures and nearby kidney area. In addition, relevant anatomical structures for surgical navigation were automatically segmented using a multi-organ segmentation algorithm that clusters volumes based on statistical properties and minimum description length criterion. For each cluster, a rendering transfer function enhanced the visualization of different organs and surrounding tissues. Results: One puncture attempt was sufficient to achieve a successful kidney puncture. The puncture took 265 seconds, and 32 seconds were necessary to plan the puncture trajectory. The virtual puncture path was followed correctively until the needle tip reached the desired kidney calyceal. Conclusions: This new solution provided spatial information regarding the needle inside the body and the possibility to visualize surrounding organs. It may offer a promising and innovative solution for percutaneous punctures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hand and finger tracking has a major importance in healthcare, for rehabilitation of hand function required due to a neurological disorder, and in virtual environment applications, like characters animation for on-line games or movies. Current solutions consist mostly of motion tracking gloves with embedded resistive bend sensors that most often suffer from signal drift, sensor saturation, sensor displacement and complex calibration procedures. More advanced solutions provide better tracking stability, but at the expense of a higher cost. The proposed solution aims to provide the required precision, stability and feasibility through the combination of eleven inertial measurements units (IMUs). Each unit captures the spatial orientation of the attached body. To fully capture the hand movement, each finger encompasses two units (at the proximal and distal phalanges), plus one unit at the back of the hand. The proposed glove was validated in two distinct steps: a) evaluation of the sensors’ accuracy and stability over time; b) evaluation of the bending trajectories during usual finger flexion tasks based on the intra-class correlation coefficient (ICC). Results revealed that the glove was sensitive mainly to magnetic field distortions and sensors tuning. The inclusion of a hard and soft iron correction algorithm and accelerometer and gyro drift and temperature compensation methods provided increased stability and precision. Finger trajectories evaluation yielded high ICC values with an overall reliability within application’s satisfying limits. The developed low cost system provides a straightforward calibration and usability, qualifying the device for hand and finger tracking in healthcare and animation industries.