873 resultados para multi-feature control
Resumo:
This paper addresses the effects of synchronisation errors (time delay, carrier phase, and carrier frequency) on the performance of linear decorrelating detectors (LDDs). A major effect is that all LDDs require certain degree of power control in the presence of synchronisation errors. The multi-shot sliding window algorithm (SLWA) and hard decision method (HDM) are analysed and their power control requirements are examined. Also, a more efficient one-shot detection scheme, called “hard-decision based coupling cancellation”, is proposed and analysed. These schemes are then compared with the isolation bit insertion (IBI) approach in terms of power control requirements.
Resumo:
In this paper the use of neural networks for the control of dynamical systems is considered. Both identification and feedback control aspects are discussed as well as the types of system for which neural networks can provide a useful technique. Multi-layer Perceptron and Radial Basis function neural network types are looked at, with an emphasis on the latter. It is shown how basis function centre selection is a critical part of the implementation process and that multivariate clustering algorithms can be an extremely useful tool for finding centres.
Resumo:
A three degrees of freedom industrial robot is controlled by applying PID self-tuning (PID/ST) controllers. This control is considered as a corrective term to a nominal value, centrally computed from an inaccurate and/ or simplified dynamic model. An identification scheme on an assumed linear plant describing the deviation from the desired trajectory is employed in order to tune the controller coefficients and thus accomplish a behaviour prescribed through a desired pole placement. A salient feature of our approach is the decentralized nature of the controllers producing the corrective term for each joint. This opens the way to practical implementation, as recent computing requirement calculations for similar set-ups have shown in the literature. Numerical results are presented.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
One of the important goals of the intelligent buildings especially in commercial applications is not only to minimize the energy consumption but also to enhance the occupant’s comfort. However, most of current development in the intelligent buildings focuses on an implementation of the automatic building control systems that can support energy efficiency approach. The consideration of occupants’ preferences is not adequate. To improve occupant’s wellbeing and energy efficiency in intelligent environments, we develop four types of agent combined together to form a multi-agent system to control the intelligent buildings. Users’ preferential conflicts are discussed. Furthermore, a negotiation mechanism for conflict resolution, has been proposed in order to reach an agreement, and has been represented in syntax directed translation schemes for future implementation and testing. Keywords: conflict resolution, intelligent buildings, multi-agent systems (MAS), negotiation strategy, syntax directed translation schemes (SDTS).
Resumo:
This technical note investigates the controllability of the linearized dynamics of the multilink inverted pendulum as the number of links and the number and location of actuators changes. It is demonstrated that, in some instances, there exist sets of parameter values that render the system uncontrollable and so usual methods for assessing controllability are difficult to employ. To assess the controllability, a theorem on strong structural controllability for single-input systems is extended to the multiinput case.
Resumo:
The British system of development control is time-consuming and uncertain in outcome. Moreover, it is becoming increasingly overloaded as it has gradually switched away from being centred on a traditional ‘is it an appropriate land-use?’ type approach to one based on multi-faceted inspections of projects and negotiations over the distribution of the potential financial gains arising from them. Recent policy developments have centred on improving the operation of development control. This paper argues that more fundamental issues may be a stake as well. Important market changes have increased workloads. Furthermore, the UK planning system's institutional framework encourages change to move in specific directions, which is not always helpful. If expectations of increased long-term housing supply are to be met more substantial changes to development control may be essential but hard to achieve.
Resumo:
[English] This paper is a tutorial introduction to pseudospectral optimal control. With pseudospectral methods, a function is approximated as a linear combination of smooth basis functions, which are often chosen to be Legendre or Chebyshev polynomials. Collocation of the differential-algebraic equations is performed at orthogonal collocation points, which are selected to yield interpolation of high accuracy. Pseudospectral methods directly discretize the original optimal control problem to recast it into a nonlinear programming format. A numerical optimizer is then employed to find approximate local optimal solutions. The paper also briefly describes the functionality and implementation of PSOPT, an open source software package written in C++ that employs pseudospectral discretization methods to solve multi-phase optimal control problems. The software implements the Legendre and Chebyshev pseudospectral methods, and it has useful features such as automatic differentiation, sparsity detection, and automatic scaling. The use of pseudospectral methods is illustrated in two problems taken from the literature on computational optimal control. [Portuguese] Este artigo e um tutorial introdutorio sobre controle otimo pseudo-espectral. Em metodos pseudo-espectrais, uma funcao e aproximada como uma combinacao linear de funcoes de base suaves, tipicamente escolhidas como polinomios de Legendre ou Chebyshev. A colocacao de equacoes algebrico-diferenciais e realizada em pontos de colocacao ortogonal, que sao selecionados de modo a minimizar o erro de interpolacao. Metodos pseudoespectrais discretizam o problema de controle otimo original de modo a converte-lo em um problema de programa cao nao-linear. Um otimizador numerico e entao empregado para obter solucoes localmente otimas. Este artigo tambem descreve sucintamente a funcionalidade e a implementacao de um pacote computacional de codigo aberto escrito em C++ chamado PSOPT. Tal pacote emprega metodos de discretizacao pseudo-spectrais para resolver problemas de controle otimo com multiplas fase. O PSOPT permite a utilizacao de metodos de Legendre ou Chebyshev, e possui caractersticas uteis tais como diferenciacao automatica, deteccao de esparsidade e escalonamento automatico. O uso de metodos pseudo-espectrais e ilustrado em dois problemas retirados da literatura de controle otimo computacional.
Resumo:
The observed dramatic decrease in September sea ice extent (SIE) has been widely discussed in the scientific literature. Though there is qualitative agreement between observations and ensemble members of the Third Coupled Model Intercomparison Project (CMIP3), it is concerning that the observed trend (1979–2010) is not captured by any ensemble member. The potential sources of this discrepancy include: observational uncertainty, physical model limitations and vigorous natural climate variability. The latter has received less attention and is difficult to assess using the relatively short observational sea ice records. In this study multi-centennial pre-industrial control simulations with five CMIP3 climate models are used to investigate the role that the Arctic oscillation (AO), the Atlantic multi-decadal oscillation (AMO) and the Atlantic meridional overturning circulation (AMOC) play in decadal sea ice variability. Further, we use the models to determine the impact that these sources of variability have had on SIE over both the era of satellite observation (1979–2010) and an extended observational record (1953–2010). There is little evidence of a relationship between the AO and SIE in the models. However, we find that both the AMO and AMOC indices are significantly correlated with SIE in all the models considered. Using sensitivity statistics derived from the models, assuming a linear relationship, we attribute 0.5–3.1%/decade of the 10.1%/decade decline in September SIE (1979–2010) to AMO driven variability.
Resumo:
Reliability analysis of probabilistic forecasts, in particular through the rank histogram or Talagrand diagram, is revisited. Two shortcomings are pointed out: Firstly, a uniform rank histogram is but a necessary condition for reliability. Secondly, if the forecast is assumed to be reliable, an indication is needed how far a histogram is expected to deviate from uniformity merely due to randomness. Concerning the first shortcoming, it is suggested that forecasts be grouped or stratified along suitable criteria, and that reliability is analyzed individually for each forecast stratum. A reliable forecast should have uniform histograms for all individual forecast strata, not only for all forecasts as a whole. As to the second shortcoming, instead of the observed frequencies, the probability of the observed frequency is plotted, providing and indication of the likelihood of the result under the hypothesis that the forecast is reliable. Furthermore, a Goodness-Of-Fit statistic is discussed which is essentially the reliability term of the Ignorance score. The discussed tools are applied to medium range forecasts for 2 m-temperature anomalies at several locations and lead times. The forecasts are stratified along the expected ranked probability score. Those forecasts which feature a high expected score turn out to be particularly unreliable.
Resumo:
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Resumo:
This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.
Resumo:
Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property.
Resumo:
Distributed generation plays a key role in reducing CO2 emissions and losses in transmission of power. However, due to the nature of renewable resources, distributed generation requires suitable control strategies to assure reliability and optimality for the grid. Multi-agent systems are perfect candidates for providing distributed control of distributed generation stations as well as providing reliability and flexibility for the grid integration. The proposed multi-agent energy management system consists of single-type agents who control one or more gird entities, which are represented as generic sub-agent elements. The agent applies one control algorithm across all elements and uses a cost function to evaluate the suitability of the element as a supplier. The behavior set by the agent's user defines which parameters of an element have greater weight in the cost function, which allows the user to specify the preference on suppliers dynamically. This study shows the ability of the multi-agent energy management system to select suppliers according to the selection behavior given by the user. The optimality of the supplier for the required demand is ensured by the cost function based on the parameters of the element.