937 resultados para modulus of elasticity
Resumo:
Using atomic force microscopy we have studied the nanomechanical response to nanoindentations of surfaces of highly oriented molecular organic thin films (thickness¿1000¿nm). The Young¿s modulus E can be estimated from the elastic deformation using Hertzian mechanics. For the quasi-one-dimensional metal tetrathiafulvalene tetracyanoquinodimethane E~20¿GPa and for the ¿ phase of the p-nitrophenyl nitronyl nitroxide radical E~2GPa. Above a few GPa, the surfaces deform plastically as evidenced by discrete discontinuities in the indentation curves associated to molecular layers being expelled by the penetrating tip.
Resumo:
[spa] La participación del trabajo en la renta nacional es constante bajo los supuestos de una función de producción Cobb-Douglas y competencia perfecta. En este artículo se relajan estos supuestos y se investiga si el comportamiento no constante de la participación del trabajo en la renta nacional se explica por (i) una elasticidad de sustitución entre capital y trabajo no unitaria y (ii) competencia no perfecta en el mercado de producto. Nos centramos en España y los U.S. y estimamos una función de producción con elasticidad de sustitución constante y competencia imperfecta en el mercado de producto. El grado de competencia imperfecta se mide a través del cálculo del price markup basado en laaproximación dual. Mostramos que la elasticidad de sustitución es mayor que uno en España y menor que uno en los US. También mostramos que el price markup aleja la elasticidad de sustitución de uno, lo aumenta en España, lo reduce en los U.S. Estos resultados se utilizan para explicar la senda decreciente de la participación del trabajo en la renta nacional, común a ambas economías, y sus contrastadas sendas de capital.
Resumo:
Dystrophin mediates a physical link between the cytoskeleton of muscle fibers and the extracellular matrix, and its absence leads to muscle degeneration and dystrophy. In this article, we show that the lack of dystrophin affects the elasticity of individual fibers within muscle tissue explants, as probed using atomic force microscopy (AFM), providing a sensitive and quantitative description of the properties of normal and dystrophic myofibers. The rescue of dystrophin expression by exon skipping or by the ectopic expression of the utrophin analogue normalized the elasticity of dystrophic muscles, and these effects were commensurate to the functional recovery of whole muscle strength. However, a more homogeneous and widespread restoration of normal elasticity was obtained by the exon-skipping approach when comparing individual myofibers. AFM may thus provide a quantification of the functional benefit of gene therapies from live tissues coupled to single-cell resolution.
Resumo:
This is Part 3 of a study of creep and resilient modulus testing of hot mix asphalt concrete. The creep and resilient modulus testing in Part 1 showed the improved load carrying characteristics of crushed particles. Cores from pavements drilled in Part 2 exhibited a poor correlation with rutting and creep/resilient modulus on pavement with a range of rut depths. The objective of Part 3 was to determine the relationship of creep and resilient modulus for 1) Marshall specimens from laboratory mixing for mix design; 2) Marshall specimens from construction plant mixing; and 3) cores drilled from the hot mixed asphalt pavement. The creep and resilient modulus data from these three sources exhibited substantial variations. No meaningful correlations of the results from these three sources were obtained.
Resumo:
The asphalt concrete (AC) dynamic modulus (|E*|) is a key design parameter in mechanistic-based pavement design methodologies such as the American Association of State Highway and Transportation Officials (AASHTO) MEPDG/Pavement-ME Design. The objective of this feasibility study was to develop frameworks for predicting the AC |E*| master curve from falling weight deflectometer (FWD) deflection-time history data collected by the Iowa Department of Transportation (Iowa DOT). A neural networks (NN) methodology was developed based on a synthetically generated viscoelastic forward solutions database to predict AC relaxation modulus (E(t)) master curve coefficients from FWD deflection-time history data. According to the theory of viscoelasticity, if AC relaxation modulus, E(t), is known, |E*| can be calculated (and vice versa) through numerical inter-conversion procedures. Several case studies focusing on full-depth AC pavements were conducted to isolate potential backcalculation issues that are only related to the modulus master curve of the AC layer. For the proof-of-concept demonstration, a comprehensive full-depth AC analysis was carried out through 10,000 batch simulations using a viscoelastic forward analysis program. Anomalies were detected in the comprehensive raw synthetic database and were eliminated through imposition of certain constraints involving the sigmoid master curve coefficients. The surrogate forward modeling results showed that NNs are able to predict deflection-time histories from E(t) master curve coefficients and other layer properties very well. The NN inverse modeling results demonstrated the potential of NNs to backcalculate the E(t) master curve coefficients from single-drop FWD deflection-time history data, although the current prediction accuracies are not sufficient to recommend these models for practical implementation. Considering the complex nature of the problem investigated with many uncertainties involved, including the possible presence of dynamics during FWD testing (related to the presence and depth of stiff layer, inertial and wave propagation effects, etc.), the limitations of current FWD technology (integration errors, truncation issues, etc.), and the need for a rapid and simplified approach for routine implementation, future research recommendations have been provided making a strong case for an expanded research study.
Resumo:
For the detection and management of osteoporosis and osteoporosis-related fractures, quantitative ultrasound (QUS) is emerging as a relatively low-cost and readily accessible alternative to dual-energy X-ray absorptiometry (DXA) measurement of bone mineral density (BMD) in certain circumstances. The following is a brief, but thorough review of the existing literature with respect to the use of QUS in 6 settings: 1) assessing fragility fracture risk; 2) diagnosing osteoporosis; 3) initiating osteoporosis treatment; 4) monitoring osteoporosis treatment; 5) osteoporosis case finding; and 6) quality assurance and control. Many QUS devices exist that are quite different with respect to the parameters they measure and the strength of empirical evidence supporting their use. In general, heel QUS appears to be most tested and most effective. Overall, some, but not all, heel QUS devices are effective assessing fracture risk in some, but not all, populations, the evidence being strongest for Caucasian females over 55 years old. Otherwise, the evidence is fair with respect to certain devices allowing for the accurate diagnosis of likelihood of osteoporosis, and generally fair to poor in terms of QUS use when initiating or monitoring osteoporosis treatment. A reasonable protocol is proposed herein for case-finding purposes, which relies on a combined assessment of clinical risk factors (CR.F) and heel QUS. Finally, several recommendations are made for quality assurance and control.
Resumo:
The object of this study was to evaluate the contribution of carotid distensibilty on baroreflex sensitivity in patients with type 2 diabetes mellitus with at least 2 additional cardiovascular risk factors. Carotid distensibility was measured bilaterally at the common carotid artery in 79 consecutive diabetic patients and 60 matched subjects without diabetes. Spontaneous baroreflex sensitivity assessment was obtained using time and frequency methods. Baroreflex sensitivity was lower in diabetic subjects as compared with nondiabetic control subjects (5.25+/-2.80 ms/mm Hg versus 7.55+/-3.79 ms/mm Hg; P<0.01, respectively). Contrary to nondiabetic subjects, diabetic subjects showed no significant correlation between carotid distensibility and baroreflex sensitivity (r2=0.08, P=0.04 and r2=0.04, P=0.13, respectively). In diabetic subjects, baroreflex sensitivity was significantly lower in subjects with peripheral neuropathy than in those with preserved vibration sensation (4.1+/-0.5 versus 6.1+/-0.4 ms/mm Hg, respectively; P=0.005). Age in nondiabetic subjects, diabetes duration, systolic blood pressure, peripheral or sensitive neuropathy, and carotid distensibility were introduced in a stepwise multivariate analysis to identify the determinants of baroreflex sensitivity. In diabetic patients, neuropathy is a more sensitive determinant of baroreflex sensitivity than the reduced carotid distensibility (stepwise analysis; F ratio=5.1, P=0.028 versus F ratio=1.9, P=0.16, respectively). In diabetic subjects with 2 additional cardiovascular risk factors, spontaneous baroreflex sensitivity is not related to carotid distensibility. Diabetic subjects represent a particular population within the spectrum of cardiovascular risk situations because of the marked neuropathy associated with their metabolic disorder. Therefore, neuropathy is a more significant determinant of baroreflex sensitivity than carotid artery elasticity in patients with type 2 diabetes.
Resumo:
In a medieval Barcelonan side-street, urine, rubbish, and a bewildering array of graphic imagery splatters the narrowing walls between two major thoroughfares. A contemporary conflict between residents, unknown artists and others is played out using banners, bottles, stickers, posters, stencils, spray paint, and bodily substances. In this shadowed liminality, local and global debates are superimposed upon substructures constructed from disease, prostitution, and the Saint of the Plague. The continuing urban struggle constitutes temporal statements of dirt and purity, violence and humour, dominance and resistance, death and salvation. Like the renovated facades masking the crumbling remains of structures long neglected, the government’s literal whitewashing of the art is a temporal cover-up of a discursive symptom stretching from deeply embedded preconditions. However, from his niche in the angular bend of the alley bearing his name, the statue of St. Rock remains unblinkingly staring, raised above the contestations expressed below.
Resumo:
Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.
Resumo:
Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.
Resumo:
The elastic moduli of vortex crystals in anisotropic superconductors are frequently involved in the investigation of their phase diagram and transport properties. We provide a detailed analysis of the harmonic eigenvalues (normal modes) of the vortex lattice for general values of the magnetic field strength, going beyond the elastic continuum regime. The detailed behavior of these wave-vector-dependent eigenvalues within the Brillouin zone (BZ), is compared with several frequently used approximations that we also recalculate. Throughout the BZ, transverse modes are less costly than their longitudinal counterparts, and there is an angular dependence which becomes more marked close to the zone boundary. Based on these results, we propose an analytic correction to the nonlocal continuum formulas which fits quite well the numerical behavior of the eigenvalues in the London regime. We use this approximate expression to calculate thermal fluctuations and the full melting line (according to Lindeman's criterion) for various values of the anisotropy parameter.
Resumo:
En este artículo se presentan estimaciones de la elasticidad de sustitución de bienes importados al mercado de los EEUU en el periodo 1990 - 2003, siguiendo a Anderson y Wincoop (2004). Estas estimaciones aprovechan la disponibilidad de la información sobre costos de transporte de bienes publicada por la Oficina del Censo de los Estados Unidos, desagregándola a seis digitos. Se obtienen dos estimaciones diferentes de la elasticidad de sustitución: una a nivel agregado promedio y otra a nivel sectorial. Como puede esperarse, las estimaciones que tienen en cuenta la endogeneidad de los costos de transporte son estadisticamente diferentes en un punto porcentual a los resultados obtenidos cuando no se contempla la estructura de los costos de transporte. Esta diferencia es incluso superior cuando comparamos los resultados obtenidos utilizando la clasificacion sectorial a nivel de dos digitos de la clasificacion ISIC revisión 2.
Resumo:
The rheological properties of dough and gluten are important for end-use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small-deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G'], large negative loadings for tan delta and steady state compliance [J(e)(0)]), the presence of high molecular weight glutenin subunits (HMW-GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high-end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.
Resumo:
The self-assembly and hydrogelation properties of two Fmoc-tripeptides [Fmoc = N-(fluorenyl-9-methoxycarbonyl)] are investigated, in borate buffer and other basic solutions. A remarkable difference in self-assembly properties is observed comparing Fmoc-VLK(Boc) with Fmoc-K(Boc)LV, both containing K protected by N(epsilon)-tert-butyloxycarbonate (Boc). In borate buffer, the former peptide forms highly anisotropic fibrils which show local alignment, and the hydrogels show flow-aligning properties. In contrast, Fmoc-K(Boc)LV forms highly branched fibrils that produce isotropic hydrogels with a much higher modulus (G' > 10(4) Pa), and lower concentration for hydrogel formation. The distinct self-assembled structures are ascribed to conformational differences, as revealed by secondary structure probes (CD, FTIR, Raman spectroscopy) and X-ray diffraction. Fmoc-VLK(Boc) forms well-defined beta-sheets with a cross-beta X-ray diffraction pattern, whereas Fmoc-KLV(Boc) forms unoriented assemblies with multiple stacked sheets. Interchange of the K and V residues when inverting the tripeptide sequence thus leads to substantial differences in self-assembled structures, suggesting a promising approach to control hydrogel properties.