996 resultados para microbial metabolic quotient
Resumo:
This study explores the potential use of stable carbon isotope ratios (delta C-13) of single fatty acids (FA) as tracers for the transformation of FA from diet to milk, with focus on the metabolic origin of c9,t11-18:2. For this purpose, dairy cows were fed diets based exclusively on C-3 and C-4 plants. The FA in milk and feed were fractionated by silver-ion thin-layer chromatography and analyzed for their delta C-13 values. Mean delta C-13 values of FA from C-3 milk were lower compared to those from C-4 milk (-30.1aEuro degrees vs. -24.9aEuro degrees, respectively). In both groups the most negative delta C-13 values of all FA analyzed were measured for c9,t11-18:2 (C-3 milk = -37.0 +/- A 2.7aEuro degrees; C-4 milk -31.4 +/- A 1.4aEuro degrees). Compared to the dietary precursors 18:2n-6 and 18:3n-3, no significant C-13-depletion was measured in t11-18:1. This suggests that the delta C-13-change in c9,t11-18:2 did not originate from the microbial biohydrogenation in the rumen, but most probably from endogenous desaturation of t11-18:1. It appears that the natural delta C-13 differences in some dietary FA are at least partly preserved in milk FA. Therefore, carbon isotope analyses of individual FA could be useful for studying metabolic transformation processes in ruminants.
Resumo:
This prospective study was designed to identify abnormalities of energy expenditure and fuel utilization which distinguish post-obese women from never-obese controls. 24 moderately obese, postmenopausal, nondiabetic women with a familial predisposition to obesity underwent assessments of body composition, fasting and postprandial energy expenditure, and fuel utilization in the obese state and after weight loss (mean 12.9 kg) to a post-obese, normal-weight state. The post-obese women were compared with 24 never-obese women of comparable age and body composition. Four years later, without intervention, body weight was reassessed in both groups. Results indicated that all parameters measured in the post-obese women were similar to the never-obese controls: mean resting energy expenditure, thermic effect of food, and fasting and postprandial substrate oxidation and insulin-glucose patterns. Four years later, post-obese women regained a mean of 10.9 kg while control subjects remained lean (mean gain 1.7 kg) (P < 0.001 between groups). Neither energy expenditure nor fuel oxidation correlated with 4-yr weight changes, whereas self-reported physical inactivity was associated with greater weight regain. The data suggest that weight gain in obesity-prone women may be due to maladaptive responses to the environment, such as physical inactivity or excess energy intake, rather than to reduced energy requirements.
Resumo:
Because increasing evidence point to the convergence of environmental and genetic risk factors to drive redox dysregulation in schizophrenia, we aim to clarify whether the metabolic anomalies associated with early psychosis reflect an adaptation to oxidative stress. Metabolomic profiling was performed to characterize the response to oxidative stress in fibroblasts from control individuals (n = 20) and early psychosis patients (n = 30), and in all, 282 metabolites were identified. In addition to the expected redox/antioxidant response, oxidative stress induced a decrease of lysolipid levels in fibroblasts from healthy controls that were largely muted in fibroblasts from patients. Most notably, fibroblasts from patients showed disrupted extracellular matrix- and arginine-related metabolism after oxidative stress, indicating impairments beyond the redox system. Plasma membrane and extracellular matrix, 2 regulators of neuronal activity and plasticity, appeared as particularly susceptible to oxidative stress and thus provide novel mechanistic insights for pathophysiological understanding of early stages of psychosis. Statistically, antipsychotic medication at the time of biopsy was not accounting for these anomalies in the metabolism of patients' fibroblasts, indicating that they might be intrinsic to the disease. Although these results are preliminary and should be confirmed in a larger group of patients, they nevertheless indicate that the metabolic signature of reactivity to oxidative stress may provide reliable early markers of psychosis. Developing protective measures aimed at normalizing the disrupted pathways should prevent the pathological consequences of environmental stressors.
Resumo:
Before planning the large-scale use of nonpathogenic strains of Fusarium oxysporum as biocontrol agents of Fusarium wilt, their behaviour and potential impact on soil ecosystems should be carefully studied as part of risk assessment. The aim of this work was to evaluate the effects of antagonistic F. oxysporum strains, genetically manipulated (T26/6) or not (233/1), on soil microbial biomass and activity. The effects were evaluated, in North-western Italy, in two soils from different sites at Albenga, one natural and the other previously solarized, and in a third soil obtained from a 10-year-old poplar stand (Popolus sp.), near Carignano. There were no detectable effects on ATP, fluorescein diacetate hydrolysis, and biomass P that could be attributed to the introduction of the antagonists. A transient increase of carbon dioxide evolution and biomass C was observed in response to the added inoculum. Although the results showed only some transient alterations, further studies are required to evaluate effects on specific microorganism populations.
Resumo:
Tumour cells proliferate much faster than normal cells; nearly all anticancer treatments are toxic to both cell types, limiting their efficacy. The altered metabolism resulting from cellular transformation and cancer progression supports cellular proliferation and survival, but leaves cancer cells dependent on a continuous supply of energy and nutrients. Hence, many metabolic enzymes have become targets for new cancer therapies. In addition to its well-described roles in cell-cycle progression and cancer, the cyclin/CDK-pRB-E2F1 pathway contributes to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism, with strong effects on overall metabolism. Notably, these cell-cycle regulators trigger the adaptive "metabolic switch" that underlies proliferation.
Resumo:
Superantigens have been defined in a variety of infectious particles such as bacteria and viruses. These superantigens have the capacity to stimulate a large percentage of the host T cells by interacting specifically with the T-cell receptor V beta chain which is shared by about 1-20% of mature T cells. The recent discovery that mammary tumour viruses express such superantigens enabled the analysis of the retroviral life cycle and led to questions about the role of superantigen in amplification of the infection.
Resumo:
Twenty-four-hour energy expenditure (24-EE), resting metabolic rate (RMR) and body composition were determined in 30 subjects from three groups; control (103 +/- 2% ideal body weight, n = 10), moderately obese (129 +/- 1% ideal body weight, n = 6), and obese (170 +/- 5% ideal body weight, n = 14) individuals. Twenty-four EE was measured in a comfortable airtight respiration chamber. When expressed as absolute values, both RMR and 24-EE were significantly increased in obese subjects when compared to normal weight subjects. The RMR was 7592 +/- 351 kJ/day in the obese, 6652 +/- 242 kJ/day in the moderately obese, and 6118 +/- 405 kJ/day in the controls. Mean 24-EE values were 10043 +/- 363, 9599 +/- 277, and 8439 +/- 432 kJ/day in the obese, moderately obese, and controls, respectively. The larger energy expenditure in the obese over 24 h was mainly due to a greater VO2 during the daylight hours. However, 92% of the larger 24-EE in the obese, compared to the control group, was accounted for by the higher RMR and only 8% by other factors such as the increased cost of moving the extra weight of the obese. The higher RMR and 24-EE in the obese was best related to the increased fat free mass.
Resumo:
The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiologic principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography. Approximately 10 y ago we provided experimental evidence that indicated a central role of glutamate signaling on astrocytes in neurometabolic coupling. The basic mechanism in neurometabolic coupling is the glutamate-stimulated aerobic glycolysis in astrocytes, such that the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na(+)-K(+) ATPase triggers glucose uptake and its glycolytic processing, which results in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fueling of the neuronal energy demands associated with synaptic transmission. Analyses of this coupling have been extended in vivo and have defined the methods of coupling for inhibitory neurotransmission as well as its spatial extent in relation to the propagation of metabolic signals within the astrocytic syncytium. On the basis of a large body of experimental evidence, we proposed an operational model, "the astrocyte-neuron lactate shuttle." A series of results obtained by independent laboratories have provided further support for this model. This body of evidence provides a molecular and cellular basis for interpreting data that are obtained with functional brain imaging studies.
Resumo:
The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.
Resumo:
Selostus: Fytaasientsyymilisäyksen vaikutus fosforin hyväksikäyttöön maissi-soijarouhepohjaisessa broilerrehussa
Resumo:
OBJECTIVES: Subependymal pseudocysts (SEPC) are cerebral periventricular cysts located on the floor of the lateral ventricle and result from regression of the germinal matrix. They are increasingly diagnosed on neonatal cranial ultrasound. While associated pathologies are reported, information about long-term prognosis is missing, and we aimed to investigate long-term follow-up of these patients. STUDY DESIGN: Newborns diagnosed with SEPC were enrolled for follow-up. Neurodevelopment outcome was assessed at 6, 18 and 46 months of age. RESULTS: 74 newborns were recruited: we found a high rate of antenatal events (63%), premature infants (66% <37 weeks, 31% <32 weeks) and twins (30%). MRI was performed in 31 patients, and cystic periventricular leukomalacia (c-PVL) was primarily falsely diagnosed in 9 of them. Underlying disease was diagnosed in 17 patients, 8 with congenital cytomegalovirus (CMV) infection, 5 with genetic and 4 with metabolic disease. Neurological examination (NE) at birth was normal for patients with SEPCs and no underlying disease, except one. Mean Developmental Quotient and IQ of these patients was 98.2 (±9.6SD; range 77-121), 94.6 (±14.2SD; 71-120) and 99.6 (±12.3SD; 76-120) at 6, 18 and 46 months of age, respectively, with no differences between the subtypes of SEPC. A subset analysis showed no outcome differences between preterm infants with or without SEPC, or between preterm of <32 GA and ≥32 GA. CONCLUSIONS: Neurodevelopment of newborns with SEPC was normal when no underlying disease was present. This study suggests that if NE is normal at birth and congenital CMV infection can be excluded, then no further investigations are needed. Moreover, it is crucial to differentiate SEPC from c-PVL which carries a poor prognosis.
Resumo:
INTRODUCTION: This study describes the characteristics of the metabolic syndrome in HIV-positive patients in the Data Collection on Adverse Events of Anti-HIV Drugs study and discusses the impact of different methodological approaches on estimates of the prevalence of metabolic syndrome over time. METHODS: We described the prevalence of the metabolic syndrome in patients under follow-up at the end of six calendar periods from 2000 to 2007. The definition that was used for the metabolic syndrome was modified to take account of the use of lipid-lowering and antihypertensive medication, measurement variability and missing values, and assessed the impact of these modifications on the estimated prevalence. RESULTS: For all definitions considered, there was an increasing prevalence of the metabolic syndrome over time, although the prevalence estimates themselves varied widely. Using our primary definition, we found an increase in prevalence from 19.4% in 2000/2001 to 41.6% in 2006/2007. Modification of the definition to incorporate antihypertensive and lipid-lowering medication had relatively little impact on the prevalence estimates, as did modification to allow for missing data. In contrast, modification to allow the metabolic syndrome to be reversible and to allow for measurement variability lowered prevalence estimates substantially. DISCUSSION: The prevalence of the metabolic syndrome in cohort studies is largely based on the use of nonstandardized measurements as they are captured in daily clinical care. As a result, bias is easily introduced, particularly when measurements are both highly variable and may be missing. We suggest that the prevalence of the metabolic syndrome in cohort studies should be based on two consecutive measurements of the laboratory components in the syndrome definition.
Resumo:
Lipin 1 is a coregulator of DNA-bound transcription factors and a phosphatidic acid (PA) phosphatase (PAP) enzyme that catalyzes a critical step in the synthesis of glycerophospholipids. Lipin 1 is highly expressed in adipocytes, and constitutive loss of lipin 1 blocks adipocyte differentiation; however, the effects of Lpin1 deficiency in differentiated adipocytes are unknown. Here we report that adipocyte-specific Lpin1 gene recombination unexpectedly resulted in expression of a truncated lipin 1 protein lacking PAP activity but retaining transcriptional regulatory function. Loss of lipin 1-mediated PAP activity in adipocytes led to reduced glyceride synthesis and increased PA content. Characterization of the deficient mice also revealed that lipin 1 normally modulates cAMP-dependent signaling through protein kinase A to control lipolysis by metabolizing PA, which is an allosteric activator of phosphodiesterase 4 and the molecular target of rapamycin. Consistent with these findings, lipin 1 expression was significantly related to adipose tissue lipolytic rates and protein kinase A signaling in adipose tissue of obese human subjects. Taken together, our findings identify lipin 1 as a reciprocal regulator of triglyceride synthesis and hydrolysis in adipocytes, and suggest that regulation of lipolysis by lipin 1 is mediated by PA-dependent modulation of phosphodiesterase 4.
Resumo:
The understanding of the innate immunity, the first line of the host defence, was significantly modified following the sequential discovery of innate immune receptors such as the Toll-like receptors (TLRs) and the NOD-like receptors (NLRs). In response to recognition of microbial patterns or danger signals, some NLRs assemble a multimolecular platform termed as the inflammasome. Inflammasome assembly leads to the activation of the proinflammatory caspase-1. Consequently, an inflammatory immune response is mounted along with a programmed cell death, called pyroptosis. This review summarizes recent advances in the knowledge of the inflammasome and its role in auto-inflammatory diseases, autoimmune diseases, and most common metabolic, cardiovascular or rheumatic diseases.