991 resultados para mathematical functions
Resumo:
We have shown that finite-size effects in the correlation functions away from equilibrium may be introduced through dimensionless numbers: the Nusselt numbers, accounting for both the nature of the boundaries and the size of the system. From an analysis based on fluctuating hydrodynamics, we conclude that the mean-square fluctuations satisfy scaling laws, since they depend only on the dimensionless numbers in addition to reduced variables. We focus on the case of diffusion modes and describe some physical situations in which finite-size effects may be relevant.
Resumo:
Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mixtures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correlation functions and related diffusion coefficients have been calculated. Special attention has been paid to the dynamic cross correlations which have been computed through recently introduced relative mean molecular velocity correlation functions which are independent on the reference frame. The differences between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-fixed, number-fixed, and solvent-fixed) are discussed.
Resumo:
We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the position and velocity of the particle and find their solutions.
Resumo:
Mitochondrial dysfunction is one of the possible mechanisms by which azole resistance can occur in Candida glabrata. Cells with mitochondrial DNA deficiency (so-called "petite mutants") upregulate ATP binding cassette (ABC) transporter genes and thus display increased resistance to azoles. Isolation of such C. glabrata mutants from patients receiving antifungal therapy or prophylaxis has been rarely reported. In this study, we characterized two sequential and related C. glabrata isolates recovered from the same patient undergoing azole therapy. The first isolate (BPY40) was azole susceptible (fluconazole MIC, 4 μg/ml), and the second (BPY41) was azole resistant (fluconazole MIC, >256 μg/ml). BPY41 exhibited mitochondrial dysfunction and upregulation of the ABC transporter genes C. glabrata CDR1 (CgCDR1), CgCDR2, and CgSNQ2. We next assessed whether mitochondrial dysfunction conferred a selective advantage during host infection by testing the virulence of BPY40 and BPY41 in mice. Surprisingly, even with in vitro growth deficiency compared to BPY40, BPY41 was more virulent (as judged by mortality and fungal tissue burden) than BPY40 in both systemic and vaginal murine infection models. The increased virulence of the petite mutant correlated with a drastic gain of fitness in mice compared to that of its parental isolate. To understand this unexpected feature, genome-wide changes in gene expression driven by the petite mutation were analyzed by use of microarrays during in vitro growth. Enrichment of specific biological processes (oxido-reductive metabolism and the stress response) was observed in BPY41, all of which was consistent with mitochondrial dysfunction. Finally, some genes involved in cell wall remodelling were upregulated in BPY41 compared to BPY40, which may partially explain the enhanced virulence of BPY41. In conclusion, this study shows for the first time that mitochondrial dysfunction selected in vivo under azole therapy, even if strongly affecting in vitro growth characteristics, can confer a selective advantage under host conditions, allowing the C. glabrata mutant to be more virulent than wild-type isolates.
Resumo:
Preface The starting point for this work and eventually the subject of the whole thesis was the question: how to estimate parameters of the affine stochastic volatility jump-diffusion models. These models are very important for contingent claim pricing. Their major advantage, availability T of analytical solutions for characteristic functions, made them the models of choice for many theoretical constructions and practical applications. At the same time, estimation of parameters of stochastic volatility jump-diffusion models is not a straightforward task. The problem is coming from the variance process, which is non-observable. There are several estimation methodologies that deal with estimation problems of latent variables. One appeared to be particularly interesting. It proposes the estimator that in contrast to the other methods requires neither discretization nor simulation of the process: the Continuous Empirical Characteristic function estimator (EGF) based on the unconditional characteristic function. However, the procedure was derived only for the stochastic volatility models without jumps. Thus, it has become the subject of my research. This thesis consists of three parts. Each one is written as independent and self contained article. At the same time, questions that are answered by the second and third parts of this Work arise naturally from the issues investigated and results obtained in the first one. The first chapter is the theoretical foundation of the thesis. It proposes an estimation procedure for the stochastic volatility models with jumps both in the asset price and variance processes. The estimation procedure is based on the joint unconditional characteristic function for the stochastic process. The major analytical result of this part as well as of the whole thesis is the closed form expression for the joint unconditional characteristic function for the stochastic volatility jump-diffusion models. The empirical part of the chapter suggests that besides a stochastic volatility, jumps both in the mean and the volatility equation are relevant for modelling returns of the S&P500 index, which has been chosen as a general representative of the stock asset class. Hence, the next question is: what jump process to use to model returns of the S&P500. The decision about the jump process in the framework of the affine jump- diffusion models boils down to defining the intensity of the compound Poisson process, a constant or some function of state variables, and to choosing the distribution of the jump size. While the jump in the variance process is usually assumed to be exponential, there are at least three distributions of the jump size which are currently used for the asset log-prices: normal, exponential and double exponential. The second part of this thesis shows that normal jumps in the asset log-returns should be used if we are to model S&P500 index by a stochastic volatility jump-diffusion model. This is a surprising result. Exponential distribution has fatter tails and for this reason either exponential or double exponential jump size was expected to provide the best it of the stochastic volatility jump-diffusion models to the data. The idea of testing the efficiency of the Continuous ECF estimator on the simulated data has already appeared when the first estimation results of the first chapter were obtained. In the absence of a benchmark or any ground for comparison it is unreasonable to be sure that our parameter estimates and the true parameters of the models coincide. The conclusion of the second chapter provides one more reason to do that kind of test. Thus, the third part of this thesis concentrates on the estimation of parameters of stochastic volatility jump- diffusion models on the basis of the asset price time-series simulated from various "true" parameter sets. The goal is to show that the Continuous ECF estimator based on the joint unconditional characteristic function is capable of finding the true parameters. And, the third chapter proves that our estimator indeed has the ability to do so. Once it is clear that the Continuous ECF estimator based on the unconditional characteristic function is working, the next question does not wait to appear. The question is whether the computation effort can be reduced without affecting the efficiency of the estimator, or whether the efficiency of the estimator can be improved without dramatically increasing the computational burden. The efficiency of the Continuous ECF estimator depends on the number of dimensions of the joint unconditional characteristic function which is used for its construction. Theoretically, the more dimensions there are, the more efficient is the estimation procedure. In practice, however, this relationship is not so straightforward due to the increasing computational difficulties. The second chapter, for example, in addition to the choice of the jump process, discusses the possibility of using the marginal, i.e. one-dimensional, unconditional characteristic function in the estimation instead of the joint, bi-dimensional, unconditional characteristic function. As result, the preference for one or the other depends on the model to be estimated. Thus, the computational effort can be reduced in some cases without affecting the efficiency of the estimator. The improvement of the estimator s efficiency by increasing its dimensionality faces more difficulties. The third chapter of this thesis, in addition to what was discussed above, compares the performance of the estimators with bi- and three-dimensional unconditional characteristic functions on the simulated data. It shows that the theoretical efficiency of the Continuous ECF estimator based on the three-dimensional unconditional characteristic function is not attainable in practice, at least for the moment, due to the limitations on the computer power and optimization toolboxes available to the general public. Thus, the Continuous ECF estimator based on the joint, bi-dimensional, unconditional characteristic function has all the reasons to exist and to be used for the estimation of parameters of the stochastic volatility jump-diffusion models.
Resumo:
Given a compact pseudo-metric space, we associate to it upper and lower dimensions, depending only on the pseudo-metric. Then we construct a doubling measure for which the measure of a dilated ball is closely related to these dimensions.
Resumo:
We prove some results concerning the possible configuration s of Herman rings for transcendental meromorphic functions. We show that one pole is enough to obtain cycles of Herman rings of arbitrary period a nd give a sufficient condition for a configuration to be realizable.
Resumo:
En este documento se ilustra de un modo práctico, el empleo de tres instrumentos que permiten al actuario definir grupos arancelarios y estimar premios de riesgo en el proceso que tasa la clase para el seguro de no vida. El primero es el análisis de segmentación (CHAID y XAID) usado en primer lugar en 1997 por UNESPA en su cartera común de coches. El segundo es un proceso de selección gradual con el modelo de regresión a base de distancia. Y el tercero es un proceso con el modelo conocido y generalizado de regresión linear, que representa la técnica más moderna en la bibliografía actuarial. De estos últimos, si combinamos funciones de eslabón diferentes y distribuciones de error, podemos obtener el aditivo clásico y modelos multiplicativos
Resumo:
[cat] En aquest treball s'analitza un model estocàstic en temps continu en el que l'agent decisor descompta les utilitats instantànies i la funció final amb taxes de preferència temporal constants però diferents. En aquest context es poden modelitzar problemes en els quals, quan el temps s'acosta al moment final, la valoració de la funció final incrementa en comparació amb les utilitats instantànies. Aquest tipus d'asimetria no es pot descriure ni amb un descompte estàndard ni amb un variable. Per tal d'obtenir solucions consistents temporalment es deriva l'equació de programació dinàmica estocàstica, les solucions de la qual són equilibris Markovians. Per a aquest tipus de preferències temporals, s'estudia el model clàssic de consum i inversió (Merton, 1971) per a les funcions d'utilitat del tipus CRRA i CARA, comparant els equilibris Markovians amb les solucions inconsistents temporalment. Finalment es discuteix la introducció del temps final aleatori.
Resumo:
In developmental research, the family has mainly been studied through dyadic interaction. Three-way interactions have received less attention, partly because of their complexity. This difficulty may be overcome by distinguishing between four hierarchically embedded functions in three-way interactions: (1) participation (inclusion of all participants), (2) organization (partners keeping to their roles), (3) focalization (sharing a common focus) and (4) affective contact (being in tune). We document this hierarchical model on a sample of 80 families observed in the Lausanne Trilogue Play situation across four different sites. Hierarchy between functions was demonstrated by means of Guttman scalability coefficient. Given the importance of the child's development in a threesome, the pertinence of this model for family assessment is discussed.