951 resultados para local iterated function systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first-passage failure of quasi-integrable Hamiltonian si-stems (multidegree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is investigated. The motion equations of such a system are first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving these equations with suitable initial and boundary conditions. Two examples are given to illustrate the proposed procedure and the results from digital simulation are obtained to verify the effectiveness of the procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the chaos synchronization of the modified Chua's circuit with x vertical bar x vertical bar function. We firstly show that a couple of the modified Chua systems with different parameters and initial conditions can be synchronized using active control when the values of parameters both in drive system and response system are known aforehand. Furthermore, based on Lyapunov stability theory we propose an adaptive active control approach to make the states of two identical Chua systems with unknown constant parameters asymptotically synchronized. Moreover the designed controller is independent of those unknown parameters. Numerical simulations are given to validate the proposed synchronization approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Household-level water treatment and safe storage systems (HWTS) are simple, local, user-friendly, and low cost options to improve drinking water quality at the point of use. However, despite conclusive evidence of the health and economic benefits of HWTS, and promotion efforts in over 50 countries in the past 20 years, implementation outcomes have been slow, reaching only 5-10 million regular users. This study attempts to understand the barriers and drivers affecting HWTS implementation. Using a case study example of a biosand filter program in southern India, system dynamics modelling is shown to be a useful tool to map the inter-relationships of different critical factors and to understand the dissemination dynamics. It is found that the co-existence of expanding quickly and achieving financial sustainability appears to be difficult to achieve under the current program structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic deformation behaviors of Zr52.5Al10Ni10Cu15Be12.5, Mg65Cu25Gd10 and Pd43Ni10Cu27P20 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, macroindentation and uniaxial compression. The significant difference in plastic deformation behavior cannot be correlated to the Poisson's ratio or the ratio of shear modulus to bulk modulus of the three BMGs, but can be explained by the free volume model. It is shown that the nucleation of local shear band is easy and multiple shear bands can be activated in the Zr52.5Al10Ni10Cu15Be12.5 alloy, which exhibits a distinct plastic strain during uniaxial compression and less serrated flow during nanoindentation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Starting in the 1980s, household-level water treatment and safe storage systems (HWTS) have been developed as simple, local, user-friendly, and low cost options to improve drinking water quality at the point of use. However, despite conclusive evidence of the health and economic benefits of HWTS, and promotion efforts in over 50 countries in the past 20 years, implementation outcomes have been slow, reaching only 5-10 million regular users. This study attempts to understand the barriers and drivers affecting HWTS implementation. Although existing literature related to HWTS and innovation diffusion theories proposed ample critical factors and recommendations, there is a lack of holistic and systemic approach to integrate these findings. It is proposed that system dynamics modelling can be a promising tool to map the inter-relationships of different critical factors and to understand the structure of HWTS dissemination process, which may lead to identifying high impact, leveraged mitigation strategies to scale-up HWTS adoption and sustained use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic spectra of one-dimensional nanostructured systems are calculated within the pure hopping model on the tight-binding Hamiltonian. By means of the renormalization group Green's function method, the dependence of the density of states on the distributions of nanoscaled grains and the changes of values of hopping integrals in nanostructured systems are studied. It is found that the frequency shifts are dependent rather on the changes of the hopping integrals at nanoscaled grains than the distribution of nanoscaled grains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organismal survival in marine habitats is often positively correlated with habitat structural complexity at local (within-patch) spatial scales. Far less is known, however, about how marine habitat structure at the landscape scale influences predation and other ecological processes, and in particular, how these processes are dictated by the interactive effect of habitat structure at local and landscape scales. The relationship between survival and habitat structure can be modeled with the habitat-survival function (HSF), which often takes on linear, hyperbolic, or sigmoid forms. We used tethering experiments to determine how seagrass landscape structure influenced the HSF for juvenile blue crabs Callinectes sapidus Rathbun in Back Sound, North Carolina, USA. Crabs were tethered in artificial seagrass plots of 7 different shoot densities embedded within small (1 – 3 m2) or large (>100 m2) seagrass patches (October 1999), and within 10 × 10 m landscapes containing patchy (<50% cover) or continuous (>90% cover) seagrass (July 2000). Overall, crab survival was higher in small than in large patches, and was higher in patchy than in continuous seagrass. The HSF was hyperbolic in large patches and in continuous seagrass, indicating that at low levels of habitat structure, relatively small increases in structure resulted in substantial increases in juvenile blue crab survival. However, the HSF was linear in small seagrass patches in 1999 and was parabolic in patchy seagrass in 2000. A sigmoid HSF, in which a threshold level of seagrass structure is required for crab survival, was never observed. Patchy seagrass landscapes are valuable refuges for juvenile blue crabs, and the effects of seagrass structural complexity on crab survival can only be fully understood when habitat structure at larger scales is considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of self-contained, low-maintenance sensor systems installed on commercial vessels is becoming an important monitoring and scientific tool in many regions around the world. These systems integrate data from meteorological and water quality sensors with GPS data into a data stream that is automatically transferred from ship to shore. To begin linking some of this developing expertise, the Alliance for Coastal Technologies (ACT) and the European Coastal and Ocean Observing Technology (ECOOT) organized a workshop on this topic in Southampton, United Kingdom, October 10-12, 2006. The participants included technology users, technology developers, and shipping representatives. They collaborated to identify sensors currently employed on integrated systems, users of this data, limitations associated with these systems, and ways to overcome these limitations. The group also identified additional technologies that could be employed on future systems and examined whether standard architectures and data protocols for integrated systems should be established. Participants at the workshop defined 17 different parameters currently being measured by integrated systems. They identified that diverse user groups utilize information from these systems from resource management agencies, such as the Environmental Protection Agency (EPA), to local tourism groups and educational organizations. Among the limitations identified were instrument compatibility and interoperability, data quality control and quality assurance, and sensor calibration andlor maintenance frequency. Standardization of these integrated systems was viewed to be both advantageous and disadvantageous; while participants believed that standardization could be beneficial on many levels, they also felt that users may be hesitant to purchase a suite of instruments from a single manufacturer; and that a "plug and play" system including sensors from multiple manufactures may be difficult to achieve. A priority recommendation and conclusion for the general integrated sensor system community was to provide vessel operators with real-time access to relevant data (e.g., ambient temperature and salinity to increase efficiency of water treatment systems and meteorological data for increased vessel safety and operating efficiency) for broader system value. Simplified data displays are also required for education and public outreach/awareness. Other key recommendations were to encourage the use of integrated sensor packages within observing systems such as 100s and EuroGOOS, identify additional customers of sensor system data, and publish results of previous work in peer-reviewed journals to increase agency and scientific awareness and confidence in the technology. Priority recommendations and conclusions for ACT entailed highlighting the value of integrated sensor systems for vessels of opportunity through articles in the popular press, and marine science. [PDF contains 28 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The question of finding variational principles for coupled systems of first order partial differential equations is considered. Using a potential representation for solutions of the first order system a higher order system is obtained. Existence of a variational principle follows if the original system can be transformed to a self-adjoint higher order system. Existence of variational principles for all linear wave equations with constant coefficients having real dispersion relations is established. The method of adjoining some of the equations of the original system to a suitable Lagrangian function by the method of Lagrange multipliers is used to construct new variational principles for a class of linear systems. The equations used as side conditions must satisfy highly-restrictive integrability conditions. In the more difficult nonlinear case the system of two equations in two independent variables can be analyzed completely. For systems determined by two conservation laws the side condition must be a conservation law in addition to satisfying the integrability conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently completing its fifth year, the Coastal Waccamaw Stormwater Education Consortium (CWSEC) helps northeastern South Carolina communities meet National Pollutant Discharge Elimination System (NPDES) Phase II permit requirements for Minimum Control Measure 1 - Public Education and Outreach - and Minimum Control Measure 2 - Public Involvement. Coordinated by Coastal Carolina University, six regional organizations serve as core education providers to eight coastal localities including six towns and cities and two large counties. CWSEC recently finished a needs assessment to begin the process of strategizing for the second NPDES Phase II 5-year permit cycle in order to continue to develop and implement effective, results-oriented stormwater education and outreach programs to meet federal requirements and satisfy local environmental and economic needs. From its conception in May 2004, CWSEC set out to fulfill new federal Clean Water Act requirements associated with the NPDES Phase II Stormwater Program. Six small municipal separate storm sewer systems (MS4s) located within the Myrtle Beach Urbanized Area endorsed a coordinated approach to regional stormwater education, and participated in a needs assessment resulting in a Regional Stormwater Education Strategy and a Phased Education Work Plan. In 2005, CWSEC was formally established and the CWSEC’s Coordinator was hired. The Coordinator, who is also the Environmental Educator at Coastal Carolina University’s Waccamaw Watershed Academy, organizes six regional agencies who serve as core education providers for eight coastal communities. The six regional agencies working as core education providers to the member MS4s include Clemson Public Service and Carolina Clear Program, Coastal Carolina University’s Waccamaw Watershed Academy, Murrells Inlet 2020, North Inlet-Winyah Bay National Estuarine Research Reserve’s Coastal Training and Public Education Programs, South Carolina Sea Grant Consortium, and Winyah Rivers Foundation’s Waccamaw Riverkeeper®. CWSEC’s organizational structure results in a synergy among the education providers, achieving greater productivity than if each provider worked separately. The member small MS4s include City of Conway, City of North Myrtle Beach, City of Myrtle Beach, Georgetown County, Horry County, Town of Atlantic Beach, Town of Briarcliffe Acres, and Town of Surfside Beach. Each MS4 contributes a modest annual fee toward the salary of the Coordinator and operational costs. (PDF contains 3 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using neuromorphic analog VLSI techniques for modeling large neural systems has several advantages over software techniques. By designing massively-parallel analog circuit arrays which are ubiquitous in neural systems, analog VLSI models are extremely fast, particularly when local interactions are important in the computation. While analog VLSI circuits are not as flexible as software methods, the constraints posed by this approach are often very similar to the constraints faced by biological systems. As a result, these constraints can offer many insights into the solutions found by evolution. This dissertation describes a hardware modeling effort to mimic the primate oculomotor system which requires both fast sensory processing and fast motor control. A one-dimensional hardware model of the primate eye has been built which simulates the physical dynamics of the biological system. It is driven by analog VLSI circuits mimicking brainstem and cortical circuits that control eye movements. In this framework, a visually-triggered saccadic system is demonstrated which generates averaging saccades. In addition, an auditory localization system, based on the neural circuits of the barn owl, is used to trigger saccades to acoustic targets in parallel with visual targets. Two different types of learning are also demonstrated on the saccadic system using floating-gate technology allowing the non-volatile storage of analog parameters directly on the chip. Finally, a model of visual attention is used to select and track moving targets against textured backgrounds, driving both saccadic and smooth pursuit eye movements to maintain the image of the target in the center of the field of view. This system represents one of the few efforts in this field to integrate both neuromorphic sensory processing and motor control in a closed-loop fashion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis discusses various methods for learning and optimization in adaptive systems. Overall, it emphasizes the relationship between optimization, learning, and adaptive systems; and it illustrates the influence of underlying hardware upon the construction of efficient algorithms for learning and optimization. Chapter 1 provides a summary and an overview.

Chapter 2 discusses a method for using feed-forward neural networks to filter the noise out of noise-corrupted signals. The networks use back-propagation learning, but they use it in a way that qualifies as unsupervised learning. The networks adapt based only on the raw input data-there are no external teachers providing information on correct operation during training. The chapter contains an analysis of the learning and develops a simple expression that, based only on the geometry of the network, predicts performance.

Chapter 3 explains a simple model of the piriform cortex, an area in the brain involved in the processing of olfactory information. The model was used to explore the possible effect of acetylcholine on learning and on odor classification. According to the model, the piriform cortex can classify odors better when acetylcholine is present during learning but not present during recall. This is interesting since it suggests that learning and recall might be separate neurochemical modes (corresponding to whether or not acetylcholine is present). When acetylcholine is turned off at all times, even during learning, the model exhibits behavior somewhat similar to Alzheimer's disease, a disease associated with the degeneration of cells that distribute acetylcholine.

Chapters 4, 5, and 6 discuss algorithms appropriate for adaptive systems implemented entirely in analog hardware. The algorithms inject noise into the systems and correlate the noise with the outputs of the systems. This allows them to estimate gradients and to implement noisy versions of gradient descent, without having to calculate gradients explicitly. The methods require only noise generators, adders, multipliers, integrators, and differentiators; and the number of devices needed scales linearly with the number of adjustable parameters in the adaptive systems. With the exception of one global signal, the algorithms require only local information exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hartree-Fock (HF) calculations have had remarkable success in describing large nuclei at high spin, temperature and deformation. To allow full range of possible deformations, the Skyrme HF equations can be discretized on a three-dimensional mesh. However, such calculations are currently limited by the computational resources provided by traditional supercomputers. To take advantage of recent developments in massively parallel computing technology, we have implemented the LLNL Skyrme-force static and rotational HF codes on Intel's DELTA and GAMMA systems at Caltech.

We decomposed the HF code by assigning a portion of the mesh to each node, with nearest neighbor meshes assigned to nodes connected by communication· channels. This kind of decomposition is well-suited for the DELTA and the GAMMA architecture because the only non-local operations are wave function orthogonalization and the boundary conditions of the Poisson equation for the Coulomb field.

Our first application of the HF code on parallel computers has been the study of identical superdeformed (SD) rotational bands in the Hg region. In the last ten years, many SD rotational bands have been found experimentally. One very surprising feature found in these SD rotational bands is that many pairs of bands in nuclei that differ by one or two mass units have nearly identical deexcitation gamma-ray energies. Our calculations of the five rotational bands in ^(192)Hg and ^(194)Pb show that the filling of specific orbitals can lead to bands with deexcitation gamma-ray energies differing by at most 2 keV in nuclei differing by two mass units and over a range of angular momenta comparable to that observed experimentally. Our calculations of SD rotational bands in the Dy region also show that twinning can be achieved by filling or emptying some specific orbitals.

The interpretation of future precise experiments on atomic parity nonconservation (PNC) in terms of parameters of the Standard Model could be hampered by uncertainties in the atomic and nuclear structure. As a further application of the massively parallel HF calculations, we calculated the proton and neutron densities of the Cesium isotopes from A = 125 to A = 139. Based on our good agreement with experimental charge radii, binding energies, and ground state spins, we conclude that the uncertainties in the ratios of weak charges are less than 10^(-3), comfortably smaller than the anticipated experimental error.