949 resultados para liver blood flow
Resumo:
PURPOSE OF REVIEW: To present the practical aspects of transcranial Doppler (TCD) and provide evidence supporting its use for the management of traumatic brain injury (TBI) patients. RECENT FINDINGS: TCD measures systolic, mean, and diastolic cerebral blood flow (CBF) velocities and calculates the pulsatility index from basal intracranial arteries. These variables reflect the brain circulation, provided there is control of potential confounding factors. TCD can be useful in patients with severe TBI to detect low CBF, for example, during intracranial hypertension, and to assess cerebral autoregulation. In the emergency room, TCD might complement brain computed tomography (CT) scan and clinical examination to screen patients at risk for further neurological deterioration after mild-to-moderate TBI. SUMMARY: The diagnostic value of TCD should be incorporated into other findings from multimodal brain monitoring and CT scan to optimize the bedside management of patients with TBI and help guide the choice of appropriate therapies.
Resumo:
Subarachnoid haemorrhage (SAH) is a form of stroke that is associated with substantial morbidity, often as a result of cerebral ischaemia that occurs in the following days. These delayed deficits in blood flow have been traditionally attributed to cerebral vasospasm (the narrowing of large arteries), which can lead to cerebral infarction and poor neurological outcome. Data from recent studies, however, show that treatment of vasospasm in patients with SAH, using targeted medication, does not translate to better neurological outcomes, and argue against vasospasm being the sole cause of the delayed ischaemic complications. Cerebral autoregulation-a mechanism that maintains stability of cerebral blood flow in response to changes in cerebral perfusion pressure-has been reported to fail after SAH, often before vasospasm becomes apparent. Failure of autoregulation, therefore, has been implicated in development of delayed cerebral ischaemia. In this Review, we summarize current knowledge about the clinical effect of disturbed cerebral autoregulation following aneurysmal SAH, with emphasis on development of delayed cerebral ischaemia and clinical outcome, and provide a critical assessment of studies of cerebral autoregulation in SAH with respect to the method of blood-flow measurement. Better understanding of cerebral autoregulation following SAH could reveal mechanisms of blood-flow regulation that could be therapeutically targeted to improve patient outcome.
Resumo:
The pathophysiological role of an increase in circulating vasopressin in sustaining global and regional vasoconstriction in patients with congestive heart failure has not been established, particularly in patients with hyponatraemia. To assess this further, 20 patients with congestive heart failure refractory to digoxin and diuretics were studied before and 60 minutes after the intravenous injection (5 micrograms/kg) of the vascular antagonist of vasopressin [1(beta-mercapto-beta,beta-cyclopentamethylene-propionic acid), 2-(0-methyl) tyrosine] arginine vasopressin. Ten patients were hyponatraemic (plasma sodium less than 135 mmol/l) and 10 were normonatraemic. In both groups of patients the vascular vasopressin antagonist did not alter systemic or pulmonary artery pressures, right atrial pressure, pulmonary capillary wedge pressure, cardiac index, or vascular resistances. Furthermore, there was no change in skin and hepatic blood flow in either group after the injection of the vascular antagonist. Only one patient in the hyponatraemic group showed considerable haemodynamic improvement. He had severe congestive heart failure and a high concentration of plasma vasopressin (51 pmol/l). Plasma renin activity, vasopressin, or catecholamine concentrations were not significantly changed in response to the administration of the vasopressin antagonist in either the hyponatraemic or the normonatraemic groups. Patients with hyponatraemia, however, had higher baseline plasma catecholamine concentrations, heart rate, pulmonary pressure and resistance, and lower hepatic blood flow than patients without hyponatraemia. Plasma vasopressin and plasma renin activity were slightly, though not significantly, higher in the hyponatraemic group. Thus the role of vasopressin in sustaining regional or global vasoconstriction seems limited in patients with congestive heart failure whether or not concomitant hyponatraemia is present. Vasopressin significantly increases the vascular tone only in rare patients with severe congestive heart failure and considerably increased vasopressin concentrations. Patients with hyponatraemia do, however, have raised baseline catecholamine concentrations, heart rate, pulmonary arterial pressure and resistance, and decreased hepatic blood flow.
Resumo:
BACKGROUND: Vascular reconstructions are becoming challenging due to the comorbidity of the aging population and since the introduction of minimally invasive approaches. Many sutureless anastomosis devices have been designed to facilitate the cardiovascular surgeon's work and the vascular join (VJ) is one of these. We designed an animal study to assess its reliability and long-term efficacy. METHODS: VJ allows the construction of end-to-end and end-to-side anastomoses. It consists of two metallic crowns fixed to the extremity of the two conduits so that vessel edges are joined layer by layer. There is no foreign material exposed to blood. In adult sheep both carotid arteries were prepared and severed. End-to-end anastomoses were performed using the VJ device on one side and the classical running suture technique on the other side. Animals were followed-up with Duplex-scan every 3 months and sacrificed after 12 months. Histopathological analysis was carried out. RESULTS: In 20 animals all 22 sutureless anastomoses were successfully completed in less than 2 min versus 6 +/- 3 min for running suture. Duplex showed the occlusion of three controls and one sutureless anastomosis. Two controls and one sutureless had stenosis >50%. Histology showed very thin layer of myointimal hyperplasia (50 +/- 10 microm) in the sutureless group versus 300 +/- 27 microm in the control. No significant inflammatory reaction was detected. CONCLUSIONS: VJ provides edge-to-edge vascular repair that can be considered the most physiological way to restore vessel continuity. For the first time, in healthy sheep, an anastomotic device provided better results than suture technique.
Resumo:
Since its introduction 16 years ago, the astrocyte-neuron lactate shuttle (ANLS) model has profoundly modified our understanding of neuroenergetics by bringing a cellular and molecular resolution. Praised or disputed, the concept has never ceased to attract attention, leading to critical advances and unexpected insights. Here, we summarize recent experimental evidence further supporting the main tenets of the model. Thus, evidence for distinct metabolic phenotypes between neurons (mainly oxidative) and astrocytes (mainly glycolytic) have been provided by genomics and classical metabolic approaches. Moreover, it has become clear that astrocytes act as a syncytium to distribute energy substrates such as lactate to active neurones. Glycogen, the main energy reserve located in astrocytes, is used as a lactate source to sustain glutamatergic neurotransmission and synaptic plasticity. Lactate is also emerging as a neuroprotective agent as well as a key signal to regulate blood flow. Characterization of monocarboxylate transporter regulation indicates a possible involvement in synaptic plasticity and memory. Finally, several modeling studies captured the implications of such findings for many brain functions. The ANLS model now represents a useful, experimentally based framework to better understand the coupling between neuronal activity and energetics as it relates to neuronal plasticity, neurodegeneration, and functional brain imaging.
Resumo:
OBJECTIVE: To determine the usefulness of computed tomography (CT), magnetic resonance imaging (MRI), and Doppler ultrasonography (US) in providing specific images of gouty tophi. METHODS: Four male patients with chronic gout with tophi affecting the knee joints (three cases) or the olecranon processes of the elbows (one case) were assessed. Crystallographic analyses of the synovial fluid or tissue aspirates of the areas of interest were made with polarising light microscopy, alizarin red staining, and x ray diffraction. CT was performed with a GE scanner, MR imaging was obtained with a 1.5 T Magneton (Siemens), and ultrasonography with colour Doppler was carried out by standard technique. RESULTS: Crystallographic analyses showed monosodium urate (MSU) crystals in the specimens of the four patients; hydroxyapatite and calcium pyrophosphate dihydrate (CPPD) crystals were not found. A diffuse soft tissue thickening was seen on plain radiographs but no calcifications or ossifications of the tophi. CT disclosed lesions containing round and oval opacities, with a mean density of about 160 Hounsfield units (HU). With MRI, lesions were of low to intermediate signal intensity on T(1) and T(2) weighting. After contrast injection in two cases, enhancement of the tophus was seen in one. Colour Doppler US showed the tophi to be hypoechogenic with peripheral increase of the blood flow in three cases. CONCLUSION: The MR and colour Doppler US images showed the tophi as masses surrounded by a hypervascular area, which cannot be considered as specific for gout. But on CT images, masses of about 160 HU density were clearly seen, which correspond to MSU crystal deposits.
Resumo:
The effect of circulating arginine vasopressin (AVP) on blood pressure, heart rate, and skin blood flow was assessed in normotensive subjects, mild hypertensive patients, and patients with congestive heart failure, utilizing the specific antagonist of AVP at the vascular receptor level, d(CH2)5Tyr(Me)AVP (5 micrograms/kg i.v.). The renin system of the normal volunteers treated with the AVP antagonist was either intact or acutely blocked with the angiotensin converting-enzyme inhibitor captopril (25 mg p.o.). In some volunteers, the cardiovascular effect of AVP released by Finnish sauna or cigarette smoking was studied. In patients with congestive heart failure, hemodynamic measurements (pressures and cardiac output) were obtained invasively. Acute blockade of AVP vascular receptors produced no cardiovascular effect unless plasma AVP levels were markedly elevated. In our experience, abnormally high circulating AVP appears to be responsible for the decrease in skin blood flow induced by cigarette smoking and to some extent for the maintenance of vascular tone in the rare patients with particularly severe congestive heart failure.
Resumo:
The presence of three water channels (aquaporins, AQP), AQP1, AQP4 and AQP9 were observed in normal brain and several rodent models of brain pathologies. Little is known about AQP distribution in the primate brain and its knowledge will be useful for future testing of drugs aimed at preventing brain edema formation. We studied the expression and cellular distribution of AQP1, 4 and 9 in the non-human primate brain. The distribution of AQP4 in the non-human primate brain was observed in perivascular astrocytes, comparable to the observation made in the rodent brain. In contrast with rodent, primate AQP1 is expressed in the processes and perivascular endfeet of a subtype of astrocytes mainly located in the white matter and the glia limitans, possibly involved in water homeostasis. AQP1 was also observed in neurons innervating the pial blood vessels, suggesting a possible role in cerebral blood flow regulation. As described in rodent, AQP9 mRNA and protein were detected in astrocytes and in catecholaminergic neurons. However additional locations were observed for AQP9 in populations of neurons located in several cortical areas of primate brains. This report describes a detailed study of AQP1, 4 and 9 distributions in the non-human primate brain, which adds to the data already published in rodent brains. This relevant species differences have to be considered carefully to assess potential drugs acting on AQPs non-human primate models before entering human clinical trials.
Resumo:
In early childhood, nonsteroidal anti-inflammatory drugs are mainly used to either prevent or treat premature labor of the mother and patent ductus arteriosus of the newborn infant. The most frequently used prostaglandin-synthesis inhibitor is indomethacin. Fetuses exposed to indomethacin in utero have been born with renal developmental defects, and in both the unborn child and the term and premature newborn this drug may compromise renal glomerular function. The latter has in the past also been observed when i.v. indomethacin or i.v. acetylsalicylic acid (aspirin) were administered to newborn rabbits. The present experiments were designed to evaluate whether ibuprofen has less renal side effects than indomethacin, as claimed. Three groups of anesthetized, ventilated, normoxemic neonatal rabbits were infused with increasing doses of ibuprofen (0.02, 0.2, 2.0 mg/kg body weight) and the following renal parameters were measured: urine volume, urinary sodium excretion, GFR, and renal plasma flow. Renal blood flow, filtration fraction, and the renal vascular resistance were calculated according to standard formulae. Intravenous ibuprofen caused a dose-dependent, significant reduction in urine volume, GFR, and renal blood flow with a fall in filtration fraction in the animals receiving the highest dose of ibuprofen (2 mg/kg body weight). There was a very steep rise in renal vascular resistance. Urinary sodium excretion decreased. These experiments in neonatal rabbits clearly show that acute i.v. doses of ibuprofen also have significant renal hemodynamic and functional side effects, not less than seen previously with indomethacin.
Resumo:
PURPOSE: To compare the renal hemodynamic and tubular effects of celecoxib, a selective inhibitor of cyclooxygenase-2 (COX-2) to those of naproxen, a nonselective inhibitor of cyclooxygenases in salt-depleted subjects. METHODS AND SUBJECTS: Forty subjects were randomized into four parallel groups to receive 200 mg celecoxib twice a day, 400 mg celecoxib twice a day, 500 mg naproxen twice a day, or a placebo for 7 days according to a double-blind study design. Blood pressure, renal hemodynamics, and urinary water and electrolyte excretion were measured before and for 3 hours after drug intake on days 1 and 7. RESULTS: Celecoxib had no effect on systemic blood pressure, but short-term transient decreases in renal blood flow and glomerular filtration rate were found with the highest dose of 400 mg on day 1. On the first day, both celecoxib and naproxen decreased urine output (P < .05) and sodium, lithium, and potassium excretion (P < .01). On day 7, similar effects on water and sodium excretion were observed. During repeated administration, a significant sodium retention occurred during the first 3 days. CONCLUSION: In salt-depleted subjects, selective inhibition of COX-2 causes sodium and potassium retention. This suggests that an increased selectivity for COX-2 does not spare the kidney, at least during salt depletion.
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.
Resumo:
Decision to revascularize a patient with stable coronary artery disease should be based on the detection of myocardial ischemia. If this decision can be straightforward with significant stenosis or in non-significant stenosis, the decision with intermediate stenosis is far more difficult and require invasive measures of functional impact of coronary stenosis on maximal blood (flow fractional flow reserve=FFR). A recent computer based method has been developed and is able to measure FFR with data acquired during a standard coronary CT-scan (FFRcT). Two recent clinical studies (DeFACTO and DISCOVER-FLOW) show that diagnostic performance of FFRcT was associated with improved diagnostic accuracy versus standard coronary CT-scan for the detection of myocardial ischemia although FFRcT need further development.
Resumo:
BACKGROUND: Clinical studies suggest that transmyocardial laser revascularization may improve regional blood flow of the subendocardial layer. The vascular growth pattern of laser channels was analyzed. METHODS: Twenty pigs were randomized to undergo ligation of left marginal arteries (n = 5), to undergo transmyocardial laser revascularization of the left lateral wall (n = 5), to undergo both procedures (n = 5) or to a control group (n = 5). All the animals were sacrificed after 1 month. Computed morphometric analysis of vascular density of the involved area was expressed as number of vascular structures per square millimeter (+/-1 standard deviation). RESULTS: The vascular density of the scar tissue of the laser channel was significantly increased in comparison with myocardial infarction alone: 49.6+/-12.8/mm2 versus 25.5+/-8.6/mm2 (p < 0.0001). The vascular densities of subendocardial and subepicardial channel areas were similar: 52.9+/-16.8/mm2 versus 46.3+/-13.6/mm2 (p = 0.41). The area immediately adjacent to the channels showed a vascular density similar to that of normal tissue: 6.02+/-1.7/mm2 versus 5.2+/-1.9/mm2 (p = 0.08). In the infarction + transmyocardial laser revascularization group, the channels were indistinguishable from infarction scar. CONCLUSIONS: Scars of transmyocardial laser revascularization channels exhibit an increased vascular density in comparison with scar tissue of myocardial infarction, which does not extend into their immediate vicinity. There was no vascular density gradient along the longitudinal axis of the channels.
Resumo:
AIMS: Aim of this study was to evaluate a possible association between endocannabinoid (EC) plasma levels, such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and coronary circulatory function in obesity. METHODS AND RESULTS: Myocardial blood flow (MBF) responses to cold pressor test (CPT) and during pharmacological vasodilation with dipyridamole were measured with (13)N-ammonia PET/CT. Study participants (n = 77) were divided into three groups based on their body mass index (BMI, kg/m(2)): control group 20 ≤ BMI <25 (n = 21); overweight group, 25 ≤ BMI <30 (n = 26); and obese group, BMI ≥ 30 (n = 30). Anandamide plasma levels, but not 2-AG plasma levels, were significantly elevated in obesity as compared with controls, respectively [0.68 (0.53, 0.78) vs. 0.56 (0.47, 0.66) ng/mL, P = 0.020, and 2.2 (1.21, 4.59) vs. 2.0 (0.80, 5.90) ng/mL, P = 0.806)]. The endothelium-related change in MBF during CPT from rest (ΔMBF) progressively declined in overweight and obese when compared with control group [0.21 (0.10, 0.27) and 0.09 (-0.01, 0.15) vs. 0.26 (0.23, 0.39) mL/g/min; P = 0.010 and P = 0.0001, respectively). Compared with controls, hyperaemic MBFs were significantly lower in overweight and obese individuals [2.39 (1.97, 2.62) vs. 1.98 (1.69, 2.26) and 2.10 (1.76, 2.36); P = 0.007 and P = 0.042, respectively)]. In obese individuals, AEA and 2-AG plasma levels were inversely correlated with ΔMBF to CPT (r = -0.37, P = 0.046 and r = -0.48, P = 0.008) and hyperaemic MBFs (r = -0.38, P = 0.052 and r = -0.45, P = 0.017), respectively. CONCLUSIONS: Increased EC plasma levels of AEA and 2-AG are associated with coronary circulatory dysfunction in obese individuals. This observation might suggest increases in EC plasma levels as a novel endogenous cardiovascular risk factor in obesity, but needing further investigations.
Resumo:
Recent years have seen a surge in mathematical modeling of the various aspects of neuron-astrocyte interactions, and the field of brain energy metabolism is no exception in that regard. Despite the advent of biophysical models in the field, the long-lasting debate on the role of lactate in brain energy metabolism is still unresolved. Quite the contrary, it has been ported to the world of differential equations. Here, we summarize the present state of this discussion from the modeler's point of view and bring some crucial points to the attention of the non-mathematically proficient reader.