980 resultados para leg exercise


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ormosia arborea (Vell.) Harms e Ormosia fastigiata Tul. são espécies similares em muitos caracteres morfológicos, o que resulta em dificuldade na sua identificação, tanto em campo quanto em material herborizado. Neste estudo foram descritas as características morfológicas das sementes e morfoanatômicas das plântulas e plantas jovens de O. arborea e O. fastigiata, coletadas em restinga e em mata ciliar, respectivamente. Sementes e plântulas foram processadas segundo técnicas usuais. As sementes de O. arborea são mais pesadas e têm germinação hipógea criptocotiledonar. O caule contém tricomas tectores esparsos e grande quantidade de lenticelas e, na raiz, nodulações. A folha apresenta parênquima paliçádico de células mais curtas, com base mais larga e presença de pigmentos vacuolares, espaços intercelulares conspícuos no parênquima esponjoso, tricomas tectores restritos à nervura principal e células epidérmicas da face adaxial maiores que as da face abaxial. A germinação de O. fastigiata é fanerocotiledonar, e a plântula possui muitos tricomas ao longo do caule e lenticelas restritas à região basal deste. As folhas apresentam tricomas tectores em todas as nervuras, com parênquima paliçádico de células tipicamente alongadas e parênquima esponjoso com espaços intercelulares reduzidos. Tais características são consistentes para separar as plântulas e sementes dessas espécies, que têm a mesma denominação popular e contribuem com informações úteis para o meio produtivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotor problems prevent the bird to move freely, jeopardizing the welfare and productivity, besides generating injuries on the legs of chickens. The objective of this study was to evaluate the influence of age, use of vitamin D, the asymmetry of limbs and gait score, the degree of leg injuries in broilers, using data mining. The analysis was performed on a data set obtained from a field experiment in which it was used two groups of birds with 30 birds each, a control group and one treated with vitamin D. It was evaluated the gait score, the asymmetry between the right and left toes, and the degree of leg injuries. The Weka ® software was used in data mining. In particular, C4.5 algorithm (also known as J48 in Weka environment) was used for the generation of a decision tree. The results showed that age is the factor that most influences the degree of leg injuries and that the data from assessments of gait score were not reliable to estimate leg weakness in broilers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the use of the medial gastrocnemius muscle and/or soleus muscle flaps as surgical treatment of the leg bone exposure.Methods: We retrospectively analyzed the medical records of patients undergoing transposition of the medial gastrocnemius and / or soleus for treating exposed bone in the leg, from January 1976 to July 2009, gathering information on epidemiological data, the etiology the lesion, the time between the initial injury and muscle transposition, the muscle used to cover the lesion, the healing evolution of the skin coverage and the function of the gastrocnemius-soleus unit.Results: 53 patients were operated, the ages varying between nine and 84 years (mean age 41); 42 were male and 11 female. The main initial injury was trauma (84.8%), consisting of tibia and / or fibula fracture. The most frequently used muscle was the soleus, in 40 cases (75.5%). The rank of 49 patients (92.5%) was excellent or good outcome, of three (5.6%) as regular and of one (1.9%) as unsatisfactory.Conclusion: the treatment of bone exposure with local muscle flaps (gastrocnemius and/or soleus) enables obtaining satisfactory results in covering of exposed structures, favoring local vascularization and improving the initial injury. It offers the advantage of providing a treatment in only one surgical procedure, an earlier recovery and reduced hospital stay.