917 resultados para late effects of ALL treatment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson disease (PD) is a movement disorder affecting over one million Americans, and 1% of our population over 60 years of age. Currently, PD has an unknown cause, no predictive biomarker, and no cure, yet there are effective treatments (medicine and surgery) to chronically manage the motor symptoms. But, PD patients also develop cognitive symptoms (e.g., distractibility, executive dysfunction) that remain untreated or may decline as a result of treating the motor symptoms. To address this important issue, I measured covert orienting of attention and overt eye movements in PD patients to assess the patients' ability to automatically detect stimuli in their visual field, to predict and attend to where the stimuli would appear, and to volitionally look somewhere else. ^ PD patients completed the cognitive tasks under multiple treatment conditions, and their performance was compared to healthy adults. PD patients first completed the tasks after they had withdrawn from medication. Their unmedicated performance revealed exaggerated automatic orienting, poor predictability, and weak volitional orienting. PD patients then repeated the tasks while medication was giving its peak benefit. The medication returned automatic covert orienting toward normal but did not improve volitional covert orienting. Several PD patients completed the tasks a third time after receiving surgery (specifically, implantation of stimulating electrodes in a subcortical brain region to alleviate motor symptoms). The stimulation (without medication) returned automatic orienting toward normal, did not change predictability, and further impaired volitional orienting. Taken together, treatments prescribed to alleviate the motor symptoms (a patient's primary concern) only improve some cognitive functions. Future studies may establish criteria to predict which patients are more likely to have cognitive benefit from medication over surgery, or vice versa. ^ I have also hypothesized an anatomical model relating orienting circuitry to abnormal PD circuitry and the therapeutic targets. My results suggest medication is more effective restoring the orienting circuitry than stimulation. Further, automatic and volitional orienting abilities seem to be modulated independently, which differs from an earlier model proposing a dependent, inverse relationship. My results are further discussed in terms of response inhibition, response selection, and the location of the selection. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of vitamin A (retinyl acetate) and three hypoxic cell sensitizers (metronidazole, misonidazole and desmethylmisonidazole) on lung tumor development in strain A mice exposed to radiation was assessed.^ In experiments involving vitamin A, two groups of mice were fed a low vitamin A diet (< 100 IU/100g diet) while the two other groups were fed a high vitamin A diet (800 IU/100g diet). After two weeks one group maintained on the high vitamin A diet and one group maintained on the low vitamin A diet were given an acute dose of 500 rad of gamma radiation to the thoracic region. The circulating level of plasma vitamin A in all four groups of mice was monitored. A difference in circulating vitamin A in the mice maintained on high and low vitamin A diet became evident by 20 weeks and continued for the duration of the experiment. Mice were killed 18, 26, and 40 weeks post irradiation, their lungs were removed and the number of surface adenomas were counted. There was a significant increase in the number of mice bearing lung tumors and the mean number of lung tumors per mouse in the irradiated group maintained on the high vitamin A diet at 40 weeks post irradiation as compared to the irradiated group maintained on a low vitamin A diet (p < 0.05). Under the conditions of this experiment the development of pulmonary adenomas in irradiated strain A mice appears to relate directly to circulating levels of vitamin A.^ In the other experiment two dose levels of the hypoxic cell sensitizers, 0.2mg/g and 0.6mg/g, were used either alone or in combination with 900 rad of gamma radiation in a fractionated dose schedule of twice a week for three weeks. In the groups of mice which received hypoxic cell sensitizers only, the prevalence and the mean number of lung tumors per mouse were somewhat increased (p < 0.10) in the higher dose group (0.6mg/g) of misonidazole but was not significantly different from the control animals in the other two sensitizer groups. The combination of hypoxic cell sensitizer and radiation did not show any significant enhancement of lung tumor response when compared with the group which received radiation only. The dose of radiation used in this study significantly enhanced lung tumor formation in mice when compared with the control group. Thus, under the experimental exposure conditions used in this investigation, which were very similar to the exposure conditions occurring in clinical treatment, all three hypoxic cell sensitizers did not sensitize the mouse to the carcinogenic effects of gamma radiation.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of its antiproliferative and differentiation-inducing properties, all-trans-retinoic acid (ATRA) has been used as a chemopreventive and therapeutic agent, for treatment various cancers including squamous cell carcinomas (SCCs). Long-term treatment with ATRA is associated with toxic effects in patients leading to acute or chronic hypervitaminosis syndrome. Moreover, prolonged treatment with oral ATRA leads to acquired resistance to the differentiation-inducing effects of the drug. This resistance is attributed to the induction of cytochrome P-450-dependent catabolic enzymes that lead to accelerated ATRA metabolism and decline in circulating levels. Most of these problems could be circumvented by incorporating ATRA in liposomes (L-ATRA) which results in sustained drug release, decrease in drug-associated toxicity, and protection of the drug from metabolism in the host. Liposomes also function as a solubilization matrix enabling lipophilic drugs like ATRA to be aerosolized and delivered directly to target areas in the aerodigestive tract and lungs. Of the 14 formulations tested, the positively-charged liposome, DPPC:SA (9:1, w/w) was found to be most effective in interacting with SCC cell lines. This, L-ATRA formulation was stable in the presence of serum proteins and buffered the toxic effects of the drug against several normal and malignant cell lines. The positive charge attributed by the presence of SA was critical for increased uptake and retention of L-ATRA by SCC cell lines and tumor spheroids. L-ATRA was highly effective in mediating differentiation in normal and transformed epithelial cells. Moreover, liposomal incorporation significantly reduced the rate of ATRA metabolism by cells and isolated liver microsomes. In vivo studies revealed that aerosol delivery is an effective way of administering L-ATRA, in terms of its safety and retention by lung tissue. The drug so delivered, is biologically active and had no toxic effects in mice. From these results, we conclude that liposome-incorporation is an excellent way of delivering ATRA to target tissues. The results obtained may have important clinical implications in treating patients with SCCs of the aerodigestive tract. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p53 gene is known to be one of the most commonly mutated genes in human cancers. Many squamous cell carcinomas of the head and neck (SCCHNs) have been shown to contain nonfunctional p53 as well. The use of p53-mediated gene therapy to treat such cancers has become an intensive area of research. Although there have been varied treatment responses to p53 gene therapy, the role that endogenous p53 status plays in this response has not been thoroughly examined. Because of this, the hypothesis of this study examined the role that the endogenous p53 status of cells plays in their response to p53 gene therapy. To test this, an adenoviral vector containing p53 (p53FAd) was administered to three squamous cell carcinoma lines with varied endogenous p53. The SCC9 cell line demonstrates no p53 protein expression, the SCC4 cell line displays overexpression of a mutant p53 protein, and the 1986LN cell line displays low to no expression of wild-type p53 protein as a consequence of human papillomavirus infection. After treatment with p53FAd, the cells were examined for evidence of exogenous p53 expression, growth suppression, alterations in cellular proteins, G1 growth arrest, apoptosis, and differentiation state. Each cell line exhibited exogenous p53 protein. Growth suppression was seen most prominently in the SCC9 cells, to some extent in the 1986LN cells, and little was seen with the SCC4 cells. WAF1/p21 protein was induced in all three cell lines, while PCNA, bcl-2, and bax expression was not significantly affected in any of the lines. Apoptosis developed first in SCC9 cells, next in 1986LN cells, with little seen in the SCC4 cells. The SCC9 line was the only line to show significant GI growth arrest. No significant differences were observed in the overall expression of differentiation markers, aside from increased keratin 13 mRNA levels in all three lines indicating a possible tendency toward differentiation. This study indicates that the endogenous p53 status of squamous cell carcinomas appears to play a critical role in determining the response to p53 adenoviral gene therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing atmospheric CO2 can decrease seawater pH and carbonate ions, which may adversely affect the larval survival of calcareous animals. In this study, we simulated future atmospheric CO2 concentrations (800, 1500, 2000 and 3000 ppm) and examined the effects of ocean acidification on the early development of 3 mollusks (the abalones Haliotis diversicolor and H. discus hannai and the oyster Crassostrea angulata). We showed that fertilization rate, hatching rate, larval shell length, trochophore development, veliger survival and metamorphosis all decreased significantly at different pCO2 levels (except oyster hatching). H. discus hannai were more tolerant of high CO2 compared to H. diversicolor. At 2000 ppm CO2, 79.2% of H. discus hannai veliger larvae developed normally, but only 13.3% of H. diversicolor veliger larvae. Tolerance of C. angulata to ocean acidification was greater than the 2 abalone species; 50.5% of its D-larvae developed normally at 3000 ppm CO2. This apparent resistance of C. angulata to ocean acidification may be attributed to their adaptability to estuarine environments. Mechanisms underlying the resistance to ocean acidification of both abalones requires further investigation. Our results suggest that ocean acidification may decrease the yield of these 3 economically important shellfish if increasing CO2 is a future trend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that ocean acidification can have profound impacts on marine organisms. However, we know little about the direct and indirect effects of ocean acidification and also how these effects interact with other features of environmental change such as warming and declining consumer pressure. In this study, we tested whether the presence of consumers (invertebrate mesograzers) influenced the interactive effects of ocean acidification and warming on benthic microalgae in a seagrass community mesocosm experiment. Net effects of acidification and warming on benthic microalgal biomass and production, as assessed by analysis of variance, were relatively weak regardless of grazer presence. However, partitioning these net effects into direct and indirect effects using structural equation modeling revealed several strong relationships. In the absence of grazers, benthic microalgae were negatively and indirectly affected by sediment-associated microalgal grazers and macroalgal shading, but directly and positively affected by acidification and warming. Combining indirect and direct effects yielded no or weak net effects. In the presence of grazers, almost all direct and indirect climate effects were nonsignificant. Our analyses highlight that (i) indirect effects of climate change may be at least as strong as direct effects, (ii) grazers are crucial in mediating these effects, and (iii) effects of ocean acidification may be apparent only through indirect effects and in combination with other variables (e.g., warming). These findings highlight the importance of experimental designs and statistical analyses that allow us to separate and quantify the direct and indirect effects of multiple climate variables on natural communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2) (control ~400, mid ~650 and high ~950 µatm) and light (photosynthetically active radiation 35, 65 and 304 µmol photons/m**2/s). Elevated CO2 projected for the end of this century (~650 and ~950 µatm) reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation) in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in seawater pH, temperature and salinity are expected to occur in the near future, which can be a threat to aquatic systems, mainly for marine coastal areas, and their inhabiting species. Hence, the present study proposes to evaluate the effects of temperature shifts, pH decrease and salinity changes in the tissue's regenerative capacity of the polychaete Diopatra neapolitana. This study evidenced that D. neapolitana individuals exposed to lower pH exhibited a significantly lower capacity to regenerate their body, while with the increase of temperature individuals showed a higher capacity to regenerate their tissues. Furthermore, the present work demonstrated that individuals exposed to salinities 28 and 35 did not present significant differences between them, while salinities 21 and 42 negatively influenced the regenerative capacity of D. neapolitana. At the end of regeneration, comparing all conditions, high salinity (42) seemed to have a greater impact on the regenerative capacity of individuals than the other factors, since under this condition individuals took longer to completely regenerate. Overall, this study demonstrated that variations in abiotic factors can strongly affect D. neapolitana's performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Larval stages are among those most vulnerable to ocean acidification (OA). Projected atmospheric CO2 levels for the end of this century may lead to negative impacts on communities dominated by calcifying taxa with planktonic life stages. We exposed Mediterranean mussel (Mytilus galloprovincialis) sperm and early life stages to pHT levels of 8.0 (current pH) and 7.6 (2100 level) by manipulating pCO2 level (380 and 1000 ppm). Sperm activity was examined at ambient temperatures (16-17 °C) using individual males as replicates. We also assessed the effects of temperature (ambient and = 20 °C) and pH on larval size, survival, respiration and calcification of late trochophore/early D-veliger stages using a cross-factorial design. Increased pCO2 had a negative effect on the percentage of motile sperm (mean response ratio R= 71%) and sperm swimming speed (R= 74%), possibly indicating reduced fertilization capacity of sperm in low concentrations. Increased temperature had a more prominent effect on larval stages than pCO2, reducing performance (RSize = 90% and RSurvival = 70%) and increasing energy demand (RRespiration = 429%). We observed no significant interactions between pCO2 and temperature. Our results suggest that increasing temperature might have a larger impact on very early larval stages of M. galloprovincialis than OA at levels predicted for the end of the century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological responses (ingestion rate, absorption rate and efficiency, respiration, rate, excretion rate) and scope for growth of a subtidal scavenging gastropod Nassarius conoidalis under the combined effects of ocean acidification (pCO2 levels: 380, 950, 1250 µatm) and temperature (15, 30 °C) were investigated for 31 days. There was a significant reduction in all the physiological rates and scope for growth following short-term exposure (1-3 days) to elevated pCO2 except absorption efficiency at 15 °C and 30 °C, and respiration rate and excretion rate at 15 °C. The percentage change in the physiological rates ranged from 0% to 90% at 15 °C and from 0% to 73% at 30 °C when pCO2 was increased from 380 µatm to 1250 µatm. The effect of pCO2 on the physiological rates was enhanced at high temperature for ingestion, absorption, respiration and excretion. When the exposure period was extended to 31 days, the effect of pCO2 was significant on the ingestion rate only. All the physiological rates remained unchanged when temperature increased from 24 °C to 30 °C but the rates at 15 °C were significantly lower, irrespective of the duration of exposure. Our data suggested that a medium-term exposure to ocean acidification has no effect on the energetics of N. conoidalis. Nevertheless, the situation may be complicated by a longer term of exposure and/or a reduction in salinity in a warming world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. Data sets in this collection provide methodological and environmental context to all samples collected during the Tara Oceans Expedition (2009-2013).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 "reduced" and the A1FI "business-as-usual" CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under "reduced" CO2 emission, but not "business-as-usual" scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under "reduced" emission scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) is anticipated to interact with the more frequently occurring hypoxic conditions in shallow coastal environments. These could exert extreme stress on the barnacle-dominated fouling communities. However, the interactive effect of these two emerging stressors on early-life stages of fouling organisms remains poorly studied. We investigated both the independent and interactive effect of low pH (7.6 vs. ambient 8.2) and low oxygen (LO; 3 mg/l vs. ambient 5 mg/l) from larval development through settlement (attachment and metamorphosis) and juvenile growth of the widespread fouling barnacle, Balanus amphitrite. In particular, we focused on the critical transition between planktonic and benthic phases to examine potential limiting factors (i.e. larval energy storage and the ability to perceive cues) that may restrain barnacle recruitment under the interactive stressors. LO significantly slowed naupliar development, while the interaction with low pH (LO-LP) seemed to alleviate the negative effect. However, 20-50% of the larvae became cyprid within 4 d post-hatching, regardless of treatment. Under the two stressors interaction (LO-LP), the barnacle larvae increased their feeding rate, which may explain why their energy reserves at competency were not different from any other treatment. In the absence of a settlement-inducing cue, a significantly lower percentage of cyprids (15% lower) settled in LO and LO-LP. The presence of an inducing cue, however, elevated attachment up to 50-70% equally across all treatments. Post-metamorphic growth was not altered, although the condition index was different between LO and LO-LP treatments, potentially indicating that less and/or weaker calcified structures were developed when the two stressors were experienced simultaneously. LO was the major driver for the responses observed and its interaction with low pH should be considered in future studies to avoid underestimating the sensitivity of biofouling species to OA and associated climate change stressors.