964 resultados para isolates of rice grassy stunt virus
Resumo:
Hemocytes of the insects Lambdina fiscellaria fiscellaria and Choristoneura fumiferana did not adhere to the protoplasts of ~he fungus EntomoEhthora egressa. Hemocyte reaction for both insect species to test-particles was not suppressed by the protoplasts. The spherule cells of _-L. fiscellaria fiscellaria adhered to the spherical hyphal bodies and hyphae of ~· ~gressa. The granular cells of -c. fumiferana adhered to the hyphae of ~· egress~. Protoplasts exposed to papain were attacked by the granular ·cells of -c. fumiferana. Spent growth medium of both protoplast isolates produced paralysis when injected into -c. fumiferana larvae. Evidence suggests that heat-stable proteins may be involved. Protoplast isolates showed differences in the growth rates and regeneration sequences using coagulated egg yolk medium, a highly modified version of Grace's insect tissue . culture medium (MGM) and modifications of MGM and in the presence of C0₂. The isolates also differed in the changes that they induced in MGM composition during protoplast growth and in the rates of glucose utilization and protein secretion. The serum of c. fumiferana larvae contained protein(s) which we believe adhere to the cell membranes of the protoplasts of E. egressa. Evidence is presented for hemocyteplasn~ interaction in the presence of protoplasts. Components in the larval serum were found to influence protoplast growth patterns. The possibility of antiprotoplast serum activity is presented. Melanin, toxic levels of ninhydrinpositive compounds and antiprotoplast proteins may have been involved in this activity. The granular cells of -L. fiscellaria fiscellaria and Q• fumiferana adhered to the hyphae of ,Rhizopus ~i$rican~. Spores of Absidia repens and the bacteria Escherichia coli and Bacillus cereus adhered to the granular cells of both species of· insects. The granular cells and plasmatocytes of -c. fumiferana were capable of phagocytosing -B. cereus. Adhesion of .A... . repens spores to c. fumiferana granular cells ~ . - was stimulated by N-acetylglucosamine and glucosamine, moderately reduced by D-fucose, D-arabinose, D-mannose, D-galatose and sucrose and mildly reduced by D-glucose, D-fructose and trehalose. There was no evidence of humoral opsonins in larval hemolymph favoring test-particle-hemocyte interaction. Granular cells of c. fumiferana exposed to papain had reduced affinities for A. repens spores.
Resumo:
We thank the staff of the Aberdeen Clinical Diagnostic Laboratory and the Centre for Genome-Enabled Biology and Medicine of the University of Aberdeen for their dedicated support to this study.
Resumo:
Acknowledgements This work was funded by Natural Science Foundation of China under grant numbers of 41071337 and 40830528 and jointly by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Treatment of emerging RNA viruses is hampered by the high mutation and replication rates that enable these viruses to operate as a quasispecies. Declining honey bee populations have been attributed to the ectoparasitic mite Varroa destructor and its affiliation with Deformed Wing Virus (DWV). In the current study we use next-generation sequencing to investigate the DWV quasispecies in an apiary known to suffer from overwintering colony losses. We show that the DWV species complex is made up of three master variants. Our results indicate that a new DWV Type C variant is distinct from the previously described types A and B, but together they form a distinct clade compared with other members of the Iflaviridae. The molecular clock estimation predicts that Type C diverged from the other variants ~319 years ago. The discovery of a new master variant of DWV has important implications for the positive identification of the true pathogen within global honey bee populations.
Resumo:
Treatment of emerging RNA viruses is hampered by the high mutation and replication rates that enable these viruses to operate as a quasispecies. Declining honey bee populations have been attributed to the ectoparasitic mite Varroa destructor and its affiliation with Deformed Wing Virus (DWV). In the current study we use next-generation sequencing to investigate the DWV quasispecies in an apiary known to suffer from overwintering colony losses. We show that the DWV species complex is made up of three master variants. Our results indicate that a new DWV Type C variant is distinct from the previously described types A and B, but together they form a distinct clade compared with other members of the Iflaviridae. The molecular clock estimation predicts that Type C diverged from the other variants ~319 years ago. The discovery of a new master variant of DWV has important implications for the positive identification of the true pathogen within global honey bee populations.
Resumo:
I explore transformative social innovation in agriculture through a particular case of agroecological innovation, the System of Rice Intensification (SRI) in India. Insights from social innovation theory that emphasize the roles of social movements and the reengagement of vulnerable populations in societal transformation can help reinstate the missing “social” dimension in current discourses on innovation in India. India has a rich and vibrant tradition of social innovation wherein vulnerable communities have engaged in collective experimentation. This is often missed in official or formal accounts. Social innovations such as SRI can help recreate these possibilities for change from outside the mainstream due to newer opportunities that networks present in the twenty-first century. I show how local and international networks led by Civil Society Organizations have reinterpreted and reconstructed game-changing macrotrends in agriculture. This has enabled the articulation and translation of an alternative paradigm for sustainable transitions within agriculture from outside formal research channels. These social innovations, however, encounter stiff opposition from established actors in agricultural research systems. Newer heterogeneous networks, as witnessed in SRI, provide opportunities for researchers within hierarchical research systems to explore, experiment, and create newer norms of engagement with Civil Society Organizations and farmers. I emphasize valuing and embedding diversity of practices and institutions at an early stage to enable systems to be more resilient and adaptable in sustainable transitions.
Resumo:
Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. In this study, we demonstrate that CpxR, previously identified as a regulator of the cell envelope stress response in Escherichia coli, is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. A conserved CpxR binding site was identified upstream of the mexA promoter in all genome-sequenced P. aeruginosa strains. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR, in P. aeruginosa strains PA14. As defective mexR is a genetic trait associated with the clinical emergence of nalB-type multidrug resistance in P. aeruginosa during antibiotic treatment, we investigated the involvement of CpxR in regulating multidrug resistance among resistant isolates generated in the laboratory via antibiotic treatment and collected in clinical settings. CpxR is required to activate expression of mexAB-oprM and enhances drug resistance, in the absence or presence of MexR, in ofloxacin-cefsulodin-resistant isolates generated in the laboratory. Furthermore, CpxR was also important in the mexR-defective clinical isolates. The newly identified regulatory linkage between CpxR and the MexAB-OprM efflux pump highlights the presence of a complex regulatory network modulating multidrug resistance in P. aeruginosa.
Resumo:
The main aim of this study was to develop rice starch (RS), ι-carrageenan (ι-car) based film. Different formulations of RS (1-4%, w/w), ι-car (0.5-2%, w/w) was blended with stearic acid (SA; 0.3-0.9%, w/w) and glycerol (1%, w/w) as a plasticizer. The effect of film ingredients on the thickness, water vapour permeability (WVP), film solubility (FS), moisture content (MC), colour, film opacity (FO), tensile strength (TS), elongation-at-break (EAB) of film was examined. Interactions and miscibility of partaking components was studied by using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Hydrocolloid suspension solution of mix polysaccharides imparted a significant impact (p<0.05) on the important attributes of resulting edible film. TS and EAB of film were improved significantly (p<0.05) when ι-car was increased in the film matrix. Formulation F1 comprising 2% ι-car, 2% 33 RS, 0.3% SA, Gly 30% w/w and 0.2% surfactant (tween®20) provided film with good 34 physical, mechanical and barrier properties. FT-IR and XRD results reveal that molecular interactions between RS-ι-car have a great impact on the film properties confining the compatibility and miscibility of mixed polysaccharide. Results of the study offers new biodegradable formulation for application on fruit and vegetables.
Resumo:
Apart from morphology and genetic characteristics, species status of Pythium zingiberis and P. myriotylum may also be confirmed based on their pathogenicity and host range. An Australian putative P. zingiberis isolate and imported type isolates of P. myriotylum and P. zingiberis were subject to both in vitro and in vivo pathogenicity tests. In vitro tests were carried out on excised carrot, ginger, potato, radish, and sweet potato tuber/root sections, and on seeds and seedlings of cucumber, cauliflower, millet, rye, sweet corn, tomato, and wheat. In all assays conducted, the Australian isolate was found to be the most pathogenic, followed by type specimen of P. zingiberis (UOP 275), and then the type specimen P. myriotylum (CBS 254.70). An in vivo experiment on ginger plants at 35°C (with 10 h day light) in quarantine conditions showed that the ginger plants inoculated with the Australian isolate and also the type specimen of P. zingiberis died at 21 days after inoculation, whereas those inoculated with P. myriotylum CBS 254.70 were still green and healthy. Along with cardinal growth rate, the Australian isolate was confirmed to be closely related to P. zingiberis. This is also the first direct comparison in pathogenicity of P. zingiberis and P. myriotylum.
Resumo:
The pathogenecity of white spot syndrome virus (WSV) was studied experimentally with challenge exposure of two hundred shrimp with average weight 10 to 12 grams of Litopenaeus vannamei. The shrimp L. vannamei before introducing examined with IQ 2000 detection Kit for WSV. The Fenneropenaeus indicus that showed the clinical sign and PCR positive of white spot disease (WSD) was used the source of WSV. The challenge exposures were accomplished by feeding minced tissue of F. indicus for 24 hours. The result showed L. vannamei after three days revealed the clinical sign of WSV, the PCR examined was positive and all shrimp died after ten days. The shrimp that showed sign of disease were collected for histpathology in Davidson fixator and a part of samples preserved in Ethyl alcohol %75to %90 for PCR. The histopathology showed the effect of virus and cowdly type A inclusion body can see in all tissue except hepatopancreas. The PCR also indicate the virus infected the shrimp Litpeneaus vannamei after 3 days. The SOI and ROI determined the severity of infection and rate of infection in different tissue.
Resumo:
Low temperature is one of the main environmental constraints for rice ( Oryza sativa L.) grain production yield. It is known that multi-environment studies play a critical role in the sustainability of rice production across diverse environments. However, there are few studies based on multi-environment studies of rice in temperate climates. The aim was to study the performance of rice plants in cold environments. Four experimental lines and six cultivars were evaluated at three locations during three seasons. The grain yield data were analyzed with ANOVA, mixed models based on the best linear unbiased predictors (BLUPs), and genotype plus Genotype × Environment interaction (GGE) biplot. High genotype contribution (> 25%) was observed in grain yield and the interaction between genotype and locations was not very important. Results also showed that ‘Quila 241319’ was the best experimental line with the highest grain yield (11.3 t ha-1) and grain yield stability across the environments; commercial cultivars were classified as medium grain yield genotypes.
Expression and partial characterisation of rabbit haemorrhagic disease virus non-structural proteins
Resumo:
Background: Occult hepatitis B infections are becoming a major global threat, but the available data on its prevalence in various parts of the world are often divergent. Objective: This study aimed to detect occult hepatitis B virus in hepatitis B surface antigen-negative serum using anti-HBc as a marker of previous infection. Patient and Methods: A total of 1000 randomly selected hepatitis B surface antigen-negative sera from blood donors were tested for hepatitis B core antibody and hepatitis B surface antibody using an ELISA and nested polymerase chain reaction was done using primers specific to the surface gene (S-gene). Results: Of the 1000 samples 55 (5.5%) were found to be reactive, of which 87.3% (48/55) were positive for hepatitis B surface antibody, indicating immunity as a result of previous infection however, that does not exclude active infection with escaped mutant HBV. Nested PCR results showed the presence of hepatitis B viral DNA in all the 55 samples that were positive for core protein, which is in agreement with the hepatitis B surface antibody result. Conclusion: This study reveals the 5.5% prevalence of occult hepatitis B among Malaysian blood donors as well as the reliability of using hepatitis B core antibody in screening for occult hepatitis B infection in low endemic, low socioeconomic settings.