914 resultados para hydrolysis kinetics
Resumo:
We report here the first direct measurements of changes in protein hydration triggered by a functional binding. This task is achieved by weighing hemoglobin (Hb) and myoglobin films exposed to an atmosphere of 98%, relative humidity during oxygenation. The binding of the first oxygen molecules to Hb tetramer triggers a change in protein conformation, which increases binding affinity to the remaining empty sites giving rise to the appearance of cooperative phenomena. Although crystallographic data have evidenced that this structural change increases the protein water-accessible surface area, isobaric osmotic stress experiments in aqueous cosolutions have shown that water binding is linked to Hb oxygenation. Now we show that the differential hydration between fully oxygenated and fully deoxygenated states of these proteins, determined by weighing protein films with a quartz crystal microbalance, agree with the ones determined by osmotic stress in aqueous cosolutions, from the linkage between protein oxygen affinity and water activity. The agreements prove that the changes in water activity brought about by adding osmolytes to the buffer solution shift biochemical equilibrium in proportion to the number of water molecules associated with the reaction. The concomitant kinetics of oxygen and of water binding to Hb have been also determined. The data show that the binding of water molecules to the extra protein surface exposed on the transition from the low-affinity T to the high-affinity R conformations of hemoglobin is the rate-limiting step of Hb cooperative reaction. This evidences that water binding is a crucial step on the allosteric mechanism regulating cooperative interactions, and suggests the possibility that environmental water activity might be engaged in the kinetic control of some important reactions in vivo.
Resumo:
Zinc (Zn) uptake kinetics and root and leaf anatomy were studied in coffee trees grown in nutrient solutions with or without Zn. Leaves and roots were sampled and cuts were made in the medium part of the leaves and in root tips and observed under an optical microscope. Plants grown without Zn showed an increase in root and in root stele diameter. There was also an increase in epidermis thickness and in the cross-sectional area of the cortex and stele due to Zn deficiency, but the diameter of xylem vessels was decreased. An increase in root cortex and stele diameter provided for an increased surface for nutrient uptake. Accordingly, C(min) was decreased from 13.8 to 3.4 mu mol L(-1) and V(max) increased from 0.50 to 2.1 mu mol cm(-2) h(-1) .
Resumo:
The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N = [H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius approximate to 1.5 nm) rotation inside the primary aggregate (radius < 3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.
Resumo:
This work aims the evaluation of the kinetic triplets corresponding to the two successive steps of thermal decomposition of Ti(IV)-ethylenediaminetetraacetate complex. Applying the isoconversional Wall-Flynn-Ozawa method on the DSC curves, average activation energy: E=172.4 +/- 9.7 and 205.3 +/- 12.8 kJ mol(-1), and pre-exponential factor: logA = 16.38 +/- 0.84 and 18.96 +/- 1.21 min(-1) at 95% confidence interval could be obtained, regarding the partial formation of anhydride and subsequent thermal decomposition of uncoordinated carboxylate groups, respectively.From E and logA values, Dollimore and Malek methods could be applied suggesting PT (Prout-Tompkins) and R3 (contracting volume) as the kinetic model to the partial formation of anhydride and thermal decomposition of the carboxylate groups, respectively.
Resumo:
The hydrolysis of TMOS in oxalic acid catalyzed reacting TMOS-water mixtures, under ultrasound stimulation, was studied by fitting a simplified dissolution and reaction modeling for samples, the hydrolysis rate of which had been measured in a previous work. The reaction pathway represented in a ternary diagram shows a heterogeneous step for the reaction which gradually progresses until complete homogenization of the system. Besides the water dissolved due to the homogenizing effect of the alcohol, ultrasound maintains a virtual and additional dissolution of water located at the interface between the TMOS and water during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TMOS was evaluated as around 150 Angstrom. The oxalic acid concentration accordingly increases the hydrolysis rate constant but its fundamental role on the solubility of water in TMOS could not unequivocally be established.
Resumo:
Two reactive dyes, C.I. Reactive Red 120 (RR120) and C.I. Reactive Green 19 (RG19), each bearing two azo groups as the chromophoric moiety and two monochloro-s-triazine groups as reactive groups, can be detected at nanomolar levels using cathodic stripping voltammetry. Linear calibration graphs were obtained for both reactive dyes, from 0.015 to 0.14 mu mol l(-1) for RR120 in pH 4 buffer and from 0.012 to 0.26 mu mol l(-1) for RG19 in pH 3 buffer, using a preconcentration at 0 V during 180 and 240 s on the mercury electrode, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this study we analyze the B-cell response in murine yersiniosis. To this end, we determined whether polyclonal activation of B-lymphocytes occurs during infection of susceptible (BALB/c) and resistant (C57BL/6) mice with Y. enterocolitica 0:8 and compared the immunoglobulin (Ig) isotypes produced in response to the infection by the two strains. The number of splenic cells secreting nonspecific and specific immunoglobulins was determined by ELISPOT. The presence of anti-Yersinia antibodies in serum was detected by ELISA. In both strains, the number of specific Ig-secreting cells was relatively low. Polyclonal B-cell activation was observed in both strains of mice, and the greatest activation was observed in the BALB/c mice, mainly for lgG(1)- and IgG(3)- secreting cells. The C57BL/6 mice showed a predominance of IgG(2a)-secreting cells. The peak production of anti-Yersinia IgG antibodies in the sera of BALB/c mice was seen on the 28th day after infection. The greatest increase in IgM occurred on the 14th day. A progressive increase of specific IgG antibodies was observed in C57BL/6 mice up to the 28th day after infection while IgM increased on the 21st day after infection. The production of specific IgA antibodies was not detected in either BALB/c or C57BL/6 mice. We conclude that polyclonal. activation of B lymphocytes occurs in both the Yersinia resistant and Yersinia-susceptible mice and that the more intense activation of B lymphocytes observed in the susceptible BALB/c mice does not enhance their resistance to Y. enterocolitica infection.
Resumo:
A kinetic study of the ultrasound-stimulated and acid-catalyzed sonohydrolysis of tetraethyl orthosilicate (TEOS) in solventless TEOS-water heterogeneous mixtures was carried out by means of a calorimetric method as a function of the ultrasound power. The hydrolysis reaction starts in acidulated heterogeneous water-TEOS mixtures after an induction period under ultrasonic stimulation. The ultrasound power seems to play a role on the dynamical coupling of the system originating a continuum upward shifting of the base line during the induction period of sonication. The rate in which the base line is upward shifted diminishes with the power. The best coupling between the ultrasound and the reactant heterogeneous mixtures for this experimental setup was found to occur at 50 W, for which the gelation time was found to be a minimum. The kinetics of the heterogeneous TEOS sonohydrolysis was studied on the basis of a dissolution and reaction modeling. The heterogeneous reaction pathway as deduced from the kinetic study was drawn in a ternary diagram as a function of the ultrasound power. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
This study examined the production of protein hydrolysates with controlled composition from cheese whey proteins. Cheese whey was characterized and several hydrolysis experiments were made using whey proteins and purified beta -lactoglobulin, as substrates, and trypsin and a-chymotrypsin, as catalysts, at two temperatures and several enzyme concentrations. Maximum degrees of hydrolysis obtained experimentally were compared to the theoretical values and peptide compositions were calculated. For trypsin, 100% of yield was achieved; for alpha -chymotrypsin, hydrolysis seemed to be dependent on the oligopeptide size. The results showed that the two proteases could hydrolyze beta -lactoglobulin. Trypsin and alpha -chymotrypsin were stable at 40 degreesC, but a sharp decrease in the protease activity was observed at 55 degreesC.
Resumo:
In this investigation, the air drying characteristics of fresh and osmotically pre-treated pineapple slices in a tray dryer were studied under different operating conditions. The air velocity varied from 1.5 to 2.5 m/s and the air temperature from 40 to 70 degreesC. The analytical solution of the second Fick's law for an infinite slab was used to calculate effective diffusion coefficients and their temperature dependence could be well represented by an Arrhenius-type equation. Comparison of the results showed that the diffusion coefficients were lower for the pre-treated fruit. By means of automatic control, it was possible to obtain drying curves under conditions of constant product temperature, which showed to be an alternative to reduce the drying time of pineapple slices.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)