959 resultados para high shear granulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length was found to be similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough. The Hart-Smith Model was modified to predict the effective bond length and ultimate load carrying capacity of joints between the normal modulus CFRP and steel plates. The Multilayer Distribution Model developed by the authors was modified to predict the load carrying capacity of joints between the high modulus CFRP and steel plates. The predicted values agreed well with experimental ones.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: There has been some difficulty getting standard laboratory rats to voluntarily consume large amounts of ethanol without the use of initiation procedures. It has previously been shown that standard laboratory rats will voluntarily consume high levels of ethanol if given intermittent-access to 20% ethanol in a 2-bottle-choice setting [Wise, Psychopharmacologia 29 (1973), 203]. In this study, we have further characterized this drinking model. METHODS: Ethanol-naïve Long-Evans rats were given intermittent-access to 20% ethanol (three 24-hour sessions per week). No sucrose fading was needed and water was always available ad libitum. Ethanol consumption, preference, and long-term drinking behaviors were investigated. Furthermore, to pharmacologically validate the intermittent-access 20% ethanol drinking paradigm, the efficacy of acamprosate and naltrexone in decreasing ethanol consumption were compared with those of groups given continuous-access to 10 or 20% ethanol, respectively. Additionally, ethanol consumption was investigated in Wistar and out-bred alcohol preferring (P) rats following intermittent-access to 20% ethanol. RESULTS: The intermittent-access 20% ethanol 2-bottle-choice drinking paradigm led standard laboratory rats to escalate their ethanol intake over the first 5 to 6 drinking sessions, reaching stable baseline consumption of high amounts of ethanol (Long-Evans: 5.1 +/- 0.6; Wistar: 5.8 +/- 0.8 g/kg/24 h, respectively). Furthermore, the cycles of excessive drinking and abstinence led to an increase in ethanol preference and increased efficacy of both acamprosate and naltrexone in Long-Evans rats. P-rats initiate drinking at a higher level than both Long-Evans and Wistar rats using the intermittent-access 20% ethanol paradigm and showed a trend toward a further escalation in ethanol intake over time (mean ethanol intake: 6.3 +/- 0.8 g/kg/24 h). CONCLUSION: Standard laboratory rats will voluntarily consume ethanol using the intermittent-access 20% ethanol drinking paradigm without the use of any initiation procedures. This model promises to be a valuable tool in the alcohol research field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a plasmonic “ac Wheatstone bridge” circuit is proposed and theoretically modeled for the first time. The bridge circuit consists of three metallic nanoparticles, shaped as rectangular prisms, with two nanoparticles acting as parallel arms of a resonant circuit and the third bridging nanoparticle acting as an optical antenna providing an output signal. Polarized light excites localized surface plasmon resonances in the two arms of the circuit, which generate an optical signal dependent on the phase-sensitive excitations of surface plasmons in the antenna. The circuit is analyzed using a plasmonic coupling theory and numerical simulations. The analyses show that the plasmonic circuit is sensitive to phase shifts between the arms of the bridge and has the potential to detect the presence of single molecules.

Relevância:

20.00% 20.00%

Publicador: