634 resultados para h]anthracene diol epoxide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last unidentified gene encoding an enzyme involved in ergosterol biosynthesis in Saccharomyces cerevisiae has been cloned. This gene, designated ERG27, encodes the 3-keto sterol reductase, which, in concert with the C-4 sterol methyloxidase (ERG25) and the C-3 sterol dehydrogenase (ERG26), catalyzes the sequential removal of the two methyl groups at the sterol C-4 position. We developed a strategy to isolate a mutant deficient in converting 3-keto to 3-hydroxy-sterols. An ergosterol auxotroph unable to synthesize sterol or grow without sterol supplementation was mutagenized. Colonies were then selected that were nystatin-resistant in the presence of 3-ketoergostadiene and cholesterol. A new ergosterol auxotroph unable to grow on 3-ketosterols without the addition of cholesterol was isolated. The gene (YLR100w) was identified by complementation. Segregants containing the YLR100w disruption failed to grow on various types of 3-keto sterol substrates. Surprisingly, when erg27 was grown on cholesterol- or ergosterol-supplemented media, the endogenous compounds that accumulated were noncyclic sterol intermediates (squalene, squalene epoxide, and squalene dioxide), and there was little or no accumulation of lanosterol or 3-ketosterols. Feeding experiments in which erg27 strains were supplemented with lanosterol (an upstream intermediate of the C-4 demethylation process) and cholesterol (an end-product sterol) demonstrated accumulation of four types of 3-keto sterols identified by GC/MS and chromatographic properties: 4-methyl-zymosterone, zymosterone, 4-methyl-fecosterone, and ergosta-7,24 (28)-dien-3-one. In addition, a fifth intermediate was isolated and identified by 1H NMR as a 4-methyl-24,25-epoxy-cholesta-7-en-3-one. Implications of these results are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vitamin K-dependent γ-glutamyl carboxylase catalyzes the posttranslational conversion of glutamic acid to γ-carboxyglutamic acid in precursor proteins containing the γ-carboxylation recognition site (γ-CRS). During this reaction, glutamic acid is converted to γ-carboxyglutamic acid while vitamin KH2 is converted to vitamin K 2,3-epoxide. Recombinant bovine carboxylase was purified free of γ-CRS-containing propeptide and endogenous substrate in a single-step immunoaffinity procedure. We show that in the absence of γ-CRS-containing propeptide and/or glutamate-containing substrate, carboxylase has little or no epoxidase activity. Epoxidase activity is induced by Phe-Leu-Glu-Glu-Leu (FLEEL) (9.2 pmol per min per pmol of enzyme), propeptide, residues −18 to −1 of proFactor IX (3.4 pmol per min per pmol of enzyme), FLEEL and propeptide (100 pmol per min per pmol of enzyme), and proPT28 (HVFLAPQQARSLLQRVRRANTFLEEVRK, residues −18 to +10 of human acarboxy-proprothrombin), (5.3 pmol per min per pmol of enzyme). These results indicate that in the absence of propeptide or glutamate-containing substrate, oxygenation of vitamin K by the carboxylase does not occur. Upon addition of propeptide or glutamate-containing substrate, the enzyme is converted to an active epoxidase. This regulatory mechanism prevents the generation of a highly reactive vitamin K intermediate in the absence of a substrate for carboxylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We hypothesized that feeding pregnant rats with a high-fat diet would increase both circulating 17β-estradiol (E2) levels in the dams and the risk of developing carcinogen-induced mammary tumors among their female offspring. Pregnant rats were fed isocaloric diets containing 12% or 16% (low fat) or 43% or 46% (high fat) of calories from corn oil, which primarily contains the n − 6 polyunsaturated fatty acid (PUFA) linoleic acid, throughout pregnancy. The plasma concentrations of E2 were significantly higher in pregnant females fed a high n − 6 PUFA diet. The female offspring of these rats were fed with a laboratory chow from birth onward, and when exposed to 7,12-dimethylbenz(a)anthracene had a significantly higher mammary tumor incidence (60% vs. 30%) and shorter latency for tumor appearance (11.4 ± 0.5 weeks vs. 14.2 ± 0.6 weeks) than the offspring of the low-fat mothers. The high-fat offspring also had puberty onset at a younger age, and their mammary glands contained significantly higher numbers of the epithelial structures that are the targets for malignant transformation. Comparable changes in puberty onset, mammary gland morphology, and tumor incidence were observed in the offspring of rats treated daily with 20 ng of E2 during pregnancy. These data, if extrapolated to humans, may explain the link among diet, early puberty onset, mammary parenchymal patterns, and breast cancer risk, and indicate that an in utero exposure to a diet high in n − 6 PUFA and/or estrogenic stimuli may be critical for affecting breast cancer risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aflatoxin B1 (AFB1) is a potent human carcinogen implicated in the etiology of hepatocellular carcinoma. Upon metabolic activation to the reactive epoxide, AFB1 forms DNA adducts primarily at the N7 position of guanines. To elucidate more fully the molecular mechanism of AFB1-induced mutagenesis, an intercalation inhibitor was designed to probe the effects of intercalation by AFB1 epoxide on its reaction with DNA. DNA duplexes were prepared consisting of a target strand containing multiple potentially reactive guanines and a nontarget strand containing a cis-syn thymidine-benzofuran photoproduct. Because the covalently linked benzofuran moiety physically occupies an intercalation site, we reasoned that such a site would be rendered inaccessible to AFB1 epoxide. By strategic positioning of this intercalation inhibitor in the intercalation site 5′ to a specific guanine, the adduct yield at that site was greatly diminished, indicating that intercalation by AFB1 epoxide contributes favorably to adduct formation. Using this approach it has been possible to simplify the production of site-specifically modified oligonucleotides containing AFB1 adducts in the sequence context of a p53 mutational hotspot. Moreover, we report herein isolation of site-specifically AFB1-modified oligonucleotides in sequences containing multiple guanines. Use of intercalation inhibitors will facilitate both investigation of the ability of other carcinogens to intercalate into DNA and the synthesis of specific carcinogen-DNA adducts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaromatic hydrocarbons are ubiquitous environmental chemicals that are important mutagens and carcinogens. The purpose of this study was to determine whether genes within the major histocompatibility complex (MHC) influence their biological activities. Cell-mediated immunity to dimethylbenz(a)anthracene (DMBA) was investigated in congenic strains of mice. On three different backgrounds, H-2k and H-2a haplotype mice developed significantly greater contact-hypersensitivity responses to DMBA than H-2b, H-2d, and H-2s mice. In B10.A(R1) mice, which are Kk and Id, a vigorous contact-hypersensitivity response was present, indicating that the response was governed by class I, rather than class II, MHC genes. C3H/HeN (H-2k) and C3H.SW (H-2s) strains were also compared for the development of skin tumors and the persistence of DMBA–DNA adducts. When subjected to a DMBA initiation, phorbol 12-tetradecanoate 13-acetate (TPA)-promotion skin-tumorigenesis protocol, C3H/HeN mice, (which develop cell-mediated immunity to DMBA) were found to have significantly fewer tumors than C3H.SW mice (a strain that failed to develop a cell-mediated immune response to DMBA). DMBA–DNA adducts were removed more rapidly in C3H/HeN than in C3H.SW mice. The results indicate that genes within the MHC play an important role in several of the biological activities of carcinogenic polyaromatic hydrocarbons. The observations are consistent with the hypothesis that cell-mediated immunity to chemical carcinogens serves to protect individuals by removing mutant cells before they can evolve into clinically apparent neoplasms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steroids produced locally in brain (neurosteroids), including dehydroepiandrosterone (DHEA), influence cognition and behavior. We previously described a novel cytochrome P450, Cyp7b, strongly expressed in rat and mouse brain, particularly in hippocampus. Cyp7b is most similar to steroidogenic P450s and potentially could play a role in neurosteroid metabolism. To examine the catalytic activity of the enzyme mouse Cyp7b cDNA was introduced into a vaccinia virus vector. Extracts from cells infected with the recombinant showed NADPH-dependent conversion of DHEA (Km, 13.6 μM) and pregnenolone (Km, 4.0 μM) to slower migrating forms on thin layer chromatography. The expressed enzyme was less active against 25-hydroxycholesterol, 17β-estradiol and 5α-androstane-3β,17β-diol, with low to undetectable activity against progesterone, corticosterone, and testosterone. On gas chromatography and mass spectrometry of the Cyp7b metabolite of DHEA the retention time and fragmentation patterns were identical to those obtained with authentic 7α-hydroxy DHEA. The reaction product also comigrated on thin layer chromatography with 7α-hydroxy DHEA but not with 7β-hydroxy DHEA; when [7α-3H]pregnenolone was incubated with Cyp7b extracts the extent of release of radioactivity into the medium suggested that hydroxylation was preferentially at the 7α position. Brain extracts also efficiently liberated tritium from [7α-3H]pregnenolone and converted DHEA to a product with a chromatographic mobility indistinguishable from 7α-hydroxy DHEA. We conclude that Cyp7b is a 7α-hydroxylase participating in the synthesis, in brain, of neurosteroids 7α-hydroxy DHEA, and 7α-hydroxy pregnenolone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic events leading to the loss of heterozygosity (LOH) have been shown to play a crucial role in the development of cancer. However, LOH events do not occur only in genetically unstable cancer cells but also have been detected in normal somatic cells of mouse and man. Mice, in which one of the alleles for adenine phosphoribosyltransferase (Aprt) has been disrupted by gene targeting, were used to investigate the potency of carcinogens to induce LOH in vivo. After 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) exposure, a 3-fold stronger mutagenic response was detected at the autosomal Aprt gene than at the X chromosomal hypoxantine-guanine phosphoribosyltransferase (Hprt) gene in splenic T-lymphocytes. Allele-specific PCR analysis showed that the normal, nontargeted Aprt allele was lost in 70% of the DMBA-induced Aprt mutants. Fluorescence in situ hybridization analysis demonstrated that the targeted allele had become duplicated in almost all DMBA-induced mutants that displayed LOH at Aprt. These results indicate that the main mechanisms by which DMBA caused LOH were mitotic recombination or chromosome loss and duplication but not deletion. However, after treatment with the alkylating agent N-ethyl-N-nitrosourea, Aprt had a similar mutagenic response to Hprt while the majority (90%) of N-ethyl-N-nitrosourea-induced Aprt mutants had retained both alleles. Unexpectedly, irradiation with x-rays, which induce primarily large deletions, resulted in a significant increase of the mutant frequency at Hprt but not at Aprt. This in vivo study clearly indicates that, in normal somatic cells, carcinogen exposure can result in the induction of LOH events that are compatible with cell survival and may represent an initiating event in tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiogenesis inhibitors are a novel class of promising therapeutic agents for treating cancer and other human diseases. Fumagillin and ovalicin compose a class of structurally related natural products that potently inhibit angiogenesis by blocking endothelial cell proliferation. A synthetic analog of fumagillin, TNP-470, is currently undergoing clinical trials for treatment of a variety of cancers. A common target for fumagillin and ovalicin recently was identified as the type 2 methionine aminopeptidase (MetAP2). These natural products bind MetAP2 covalently, inhibiting its enzymatic activity. The specificity of this binding is underscored by the lack of inhibition of the closely related type 1 enzyme, MetAP1. The molecular basis of the high affinity and specificity of these inhibitors for MetAP2 has remained undiscovered. To determine the structural elements of these inhibitors and MetAP2 that are involved in this interaction, we synthesized fumagillin analogs in which each of the potentially reactive epoxide groups was removed either individually or in combination. We found that the ring epoxide in fumagillin is involved in the covalent modification of MetAP2, whereas the side chain epoxide group is dispensable. By using a fumagillin analog tagged with fluorescein, His-231 in MetAP2 was identified as the residue that is covalently modified by fumagillin. Site-directed mutagenesis of His-231 demonstrated its importance for the catalytic activity of MetAP2 and confirmed that the same residue is covalently modified by fumagillin. These results, in agreement with a recent structural study, suggest that fumagillin and ovalicin inhibit MetAP2 by irreversible blockage of the active site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In normal rats and mice, immunostaining with specific antibodies revealed that nuclei of most prostatic epithelial cells harbor estrogen receptor β (ERβ). In rat ventral prostate, 530- and 549-aa isoforms of the receptor were identified. These sediment in the 4S region of low-salt sucrose gradients, indicating that prostatic ERβ does not contain the same protein chaperones that are associated with ERα. Estradiol (E2) binding and ERβ immunoreactivity coincide on the gradient, with no indication of ERα. In prostates from mice in which the ERβ gene has been inactivated (BERKO), androgen receptor (AR) levels are elevated, and the tissue contains multiple hyperplastic foci. Most epithelial cells express the proliferation antigen Ki-67. In contrast, prostatic epithelium from wild-type littermates is single layered with no hyperplasia, and very few cells express Ki-67. Rat ventral prostate contains an estrogenic component, which comigrates on HPLC with the testosterone metabolite 5α-androstane-3β,17β-diol (3βAdiol). This compound, which competes with E2 for binding to ERβ and elicits an estrogenic response in the aorta but not in the pituitary, decreases the AR content in prostates of wild-type mice but does not affect the elevated levels seen in ERβ knockout (BERKO) mice. Thus ERβ, probably as a complex with 3βAdiol, is involved in regulating the AR content of the rodent prostate and in restraining epithelial growth. These findings suggest that ligands specific for ERβ may be useful in the prevention and/or clinical management of prostatic hyperplasia and neoplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High Al resistance in buckwheat (Fagopyrum esculentum Moench. cv Jianxi) has been suggested to be associated with both internal and external detoxification mechanisms. In this study the characteristics of the external detoxification mechanism, Al-induced secretion of oxalic acid, were investigated. Eleven days of P depletion failed to induce secretion of oxalic acid. Exposure to 50 μm LaCl3 also did not induce the secretion of oxalic acid, suggesting that this secretion is a specific response to Al stress. Secretion of oxalic acid was maintained for 8 h by a 3-h pulse treatment with 150 μm Al. A nondestructive method was developed to determine the site of the secretion along the root. Oxalic acid was found to be secreted in the region 0 to 10 mm from the root tip. Experiments using excised roots also showed that secretion was located on the root tip. Four kinds of anion-channel inhibitors showed different effects on Al-induced secretion of oxalic acid: 10 μm anthracene-9-carboxylic acid and 4,4′-diisothiocyanatostilbene-2,2′-disulfonate had no effect, niflumic acid stimulated the secretion 4-fold, and phenylglyoxal inhibited the secretion by 50%. Root elongation in buckwheat was not inhibited by 25 μm Al or 10 μm phenylglyoxal alone but was inhibited by 40% in the presence of Al and phenylglyoxal, confirming that secretion of oxalic acid is associated with Al resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have evaluated two synthetic epothilone analogues lacking the 12,13-epoxide functionality, 12,13-desoxyepothilone B (dEpoB), and 12,13-desoxyepothilone F (dEpoF). The concentrations required for 50% growth inhibition (IC50) for a variety of anticancer agents were measured in CCRF-CEM/VBL1000 cells (2,048-fold resistance to vinblastine). By using dEpoB, dEpoF, aza-EpoB, and paclitaxel, the IC50 values were 0.029, 0.092, 2.99, and 5.17 μM, respectively. These values represent 4-, 33.5-, 1,423- and 3,133-fold resistance, respectively, when compared with the corresponding IC50 in the parent [nonmultiple drug-resistant (MDR)] CCRF-CEM cells. We then produced MDR human lung carcinoma A549 cells by continuous exposure of the tumor cells to sublethal concentrations of dEpoB (1.8 yr), vinblastine (1.2 yr), and paclitaxel (1.8 yr). This continued exposure led to the development of 2.1-, 4,848-, and 2,553-fold resistance to each drug, respectively. The therapeutic effect of dEpoB and paclitaxel was also compared in vivo in a mouse model by using various tumor xenografts. dEpoB is much more effective in reducing tumor sizes in all MDR tumors tested. Analysis of dEpoF, an analog possessing greater aqueous solubility than dEpoB, showed curative effects similar to dEpoB against K562, CCRF-CEM, and MX-1 xenografts. These results indicate that dEpoB and dEpoF are efficacious antitumor agents with both a broad chemotherapeutic spectrum and wide safety margins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have cloned a novel member of the nuclear receptor superfamily. The cDNA of clone 29 was isolated from a rat prostate cDNA library and it encodes a protein of 485 amino acid residues with a calculated molecular weight of 54.2 kDa. Clone 29 protein is unique in that it is highly homologous to the rat estrogen receptor (ER) protein, particularly in the DNA-binding domain (95%) and in the C-terminal ligand-binding domain (55%). Expression of clone 29 in rat tissues was investigated by in situ hybridization and prominent expression was found in prostate and ovary. In the prostate clone 29 is expressed in the epithelial cells of the secretory alveoli, whereas in the ovary the granuloma cells in primary, secondary, and mature follicles showed expression of clone 29. Saturation ligand-binding analysis of in vitro synthesized clone 29 protein revealed a single binding component for 17beta-estradiol (E2) with high affinity (Kd= 0.6 nM). In ligand-competition experiments the binding affinity decreased in the order E2 > diethylstilbestrol > estriol > estrone > 5alpha-androstane-3beta,17beta-diol >> testosterone = progesterone = corticosterone = 5alpha-androstane-3alpha,17beta-diol. In cotransfection experiments of Chinese hamster ovary cells with a clone 29 expression vector and an estrogen-regulated reporter gene, maximal stimulation (about 3-fold) of reporter gene activity was found during incubation with 10 nM of E2. Neither progesterone, testosterone, dexamethasone, thyroid hormone, all-trans-retinoic acid, nor 5alpha-androstane-3alpha,I7beta-diol could stimulate reporter gene activity, whereas estrone and 5alpha-androstane-3beta,17beta-diol did. We conclude that clone 29 cDNA encodes a novel rat ER, which we suggest be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leukotriene A4 (LTA4) hydrolase [(7E,9E,11Z,14Z)-(5S,6S)-5,6-epoxyicosa-7, 9,11,14-tetraenoate hydrolase; EC 3.3.2.6] is a bifunctional zinc metalloenzyme that catalyzes the final step in the biosynthesis of the potent chemotactic agent leukotriene B4 (LTB4). LTA4 hydrolase/aminopeptidase is suicide inactivated during catalysis via an apparently mechanism-based irreversible binding of LTA4 to the protein in a 1:1 stoichiometry. Previously, we have identified a henicosapeptide, encompassing residues Leu-365 to Lys-385 in human LTA4 hydrolase, which contains a site involved in the covalent binding of LTA4 to the native enzyme. To investigate the role of Tyr-378, a potential candidate for this binding site, we exchanged Tyr for Phe or Gln in two separate mutants. In addition, each of two adjacent and potentially reactive residues, Ser-379 and Ser-380, were exchanged for Ala. The mutated enzymes were expressed as (His)6-tagged fusion proteins in Escherichia coli, purified to apparent homogeneity, and characterized. Enzyme activity determinations and differential peptide mapping, before and after repeated exposure to LTA4, revealed that wild-type enzyme and the mutants [S379A] and [S380A]LTA4hydrolase were equally susceptible to suicide inactivation whereas the mutants in position 378 were no longer inactivated or covalently modified by LTA4. Furthermore, in [Y378F]LTA4 hydrolase, the value of kcat for epoxide hydrolysis was increased 2.5-fold over that of the wild-type enzyme. Thus, by a single-point mutation in LTA4 hydrolase, catalysis and covalent modification/inactivation have been dissociated, yielding an enzyme with increased turnover and resistance to mechanism-based inactivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leukotriene A4 (LTA4) hydrolase [7E,9E,11Z,14Z)-(5S,6S)-5,6-epoxyicosa-7,9 ,11,14-tetraenoate hydrolase; EC 3.3.2.6] is a bifunctional zinc metalloenzyme which converts LTA4 into the chemotactic agent leukotriene B4 (LTB4). Suicide inactivation, a typical feature of LTA4 hydrolase/aminopeptidase, occurs via an irreversible, apparently mechanism-based, covalent binding of LTA4 to the protein in a 1:1 stoichiometry. Differential lysine-specific peptide mapping of unmodified and suicide-inactivated LTA4 hydrolase has been used to identify a henicosapeptide, encompassing the amino acid residues 365-385 of human LTA4 hydrolase, which is involved in the binding of LTA4, LTA4 methyl ester, and LTA4 ethyl ester to the native enzyme. A modified form of this peptide, generated by lysine-specific digestion of LTA4 hydrolase inactivated by LTA4 ethyl ester, could be isolated for complete Edman degradation. The sequence analysis revealed a gap at position 14, which shows that binding of the leukotriene epoxide had occurred via Tyr-378 in LTA4 hydrolase. Inactivation of the epoxide hydrolase and the aminopeptidase activity was accompanied by a proportionate modification of the peptide. Furthermore, both enzyme inactivation and peptide modification could be prevented by preincubation of LTA4 hydrolase with the competitive inhibitor bestatin, which demonstrates that the henicosapeptide contains functional elements of the active site(s). It may now be possible to clarify the molecular mechanisms underlying suicide inactivation and epoxide hydrolysis by site-directed mutagenesis combined with structural analysis of the lipid molecule, covalently bound to the peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural evidence has accumulated suggesting that fusion and/or translocation factors are involved in plastid membrane biogenesis. To test this hypothesis, we have developed an in vitro system in which the extent of fusion and/or translocation is monitored by the conversion of the xanthophyll epoxide (antheraxanthin) into the red ketocarotenoid (capsanthin). Only chromoplast membrane vesicles from red pepper fruits (Capsicum annuum) contain the required enzyme. Vesicles prepared from the mutant yellow cultivar are devoid of this enzyme and accumulate antheraxanthin. The fusion and/or translocation activity is characterized by complementation due to the synthesis of capsanthin and the parallel decrease of antheraxanthin when the two types of vesicles are incubated together in the presence of plastid stroma. We show that the extent of conversion is dependent upon an ATP-requiring protein that is sensitive to N-ethylmaleimide. Further purification and immunological analysis have revealed that the active factor, designated plastid fusion and/or translocation factor (Pftf), resides in a protein of 72 kDa. cDNA cloning revealed that mature Pftf has significant homology to yeast and animal (NSF) or bacterial (Ftsh) proteins involved in vesicle fusion or membrane protein translocation.