966 resultados para ground-state spin and parity
Resumo:
We have used Mössbauer and electron paramagnetic resonance (EPR) spectroscopy to study a heme-N-alkylated derivative of chloroperoxidase (CPO) prepared by mechanism-based inactivation with allylbenzene and hydrogen peroxide. The freshly prepared inactivated enzyme (“green CPO”) displayed a nearly pure low-spin ferric EPR signal with g = 1.94, 2.15, 2.31. The Mössbauer spectrum of the same species recorded at 4.2 K showed magnetic hyperfine splittings, which could be simulated in terms of a spin Hamiltonian with a complete set of hyperfine parameters in the slow spin fluctuation limit. The EPR spectrum of green CPO was simulated using a three-term crystal field model including g-strain. The best-fit parameters implied a very strong octahedral field in which the three 2T2 levels of the (3d)5 configuration in green CPO were lowest in energy, followed by a quartet. In native CPO, the 6A1 states follow the 2T2 ground state doublet. The alkene-mediated inactivation of CPO is spontaneously reversible. Warming of a sample of green CPO to 22°C for increasing times before freezing revealed slow conversion of the novel EPR species to two further spin S = ½ ferric species. One of these species displayed g = 1.82, 2.25, 2.60 indistinguishable from native CPO. By subtracting spectral components due to native and green CPO, a third species with g = 1.86, 2.24, 2.50 could be generated. The EPR spectrum of this “quasi-native CPO,” which appears at intermediate times during the reactivation, was simulated using best-fit parameters similar to those used for native CPO.
Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer.
Resumo:
The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic, posttranslational cyclization and oxidation of a hexapeptide unit. This permits fusion of the DNA sequence of GFP with that of any protein whose expression or transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. The excited state dynamics of GFP were studied following photo-excitation of each of its two strong absorption bands in the visible using fluorescence upconversion spectroscopy (about 100 fs time resolution). It is shown that excitation of the higher energy feature leads very rapidly to a form of the lower energy species, and that the excited state interconversion rate can be markedly slowed by replacing exchangeable protons with deuterons. This observation and others lead to a model in which the two visible absorption bands correspond to GFP in two ground-state conformations. These conformations can be slowly interconverted in the ground state, but the process is much faster in the excited state. The observed isotope effect suggests that the initial excited state process involves a proton transfer reaction that is followed by additional structural changes. These observations may help to rationalize and motivate mutations that alter the absorption properties and improve the photo stability of GFP.
Resumo:
We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.
Resumo:
The first few low-lying spin states of alternant polycyclic aromatic hydrocarbon (PAH) molecules of several shapes showing defect states induced by contour hydrogenation have been studied both by ab initio methods and by a precise numerical solution of Pariser-Parr-Pople (PPP) interacting model. In accordance with Lieb's theorem, the ground state shows a spin multiplicity equal to one for balanced molecules, and it gets larger values for imbalanced molecules (that is, when the number of π electrons on both subsets is not equal). Furthermore, we find a systematic decrease of the singlet-triplet splitting as a function of the distance between defects, regardless of whether the ground state is singlet or triplet. For example, a splitting smaller than 0.001 eV is obtained for a medium size C46H28 PAH molecule (di-hydrogenated [11]phenacene) showing a singlet ground state. We conclude that π electrons unbound by lattice defects tend to remain localized and unpaired even when long-range Coulomb interaction is taken into account. Therefore they show a biradical character (polyradical character for more than two defects) and should be studied as two or more local doublets. The implications for electron transport are potentially important since these unpaired electrons can trap traveling electrons or simply flip their spin at a very small energy cost.
Resumo:
Spin chains are among the simplest physical systems in which electron-electron interactions induce novel states of matter. Here we propose to combine atomic scale engineering and spectroscopic capabilities of state of the art scanning tunnel microscopy to probe the fractionalized edge states of individual atomic scale S=1 spin chains. These edge states arise from the topological order of the ground state in the Haldane phase. We also show that the Haldane gap and the spin-spin correlation length can be measured with the same technique.
Resumo:
Prepared in cooperation with the New Mexico Bureau of Mines and Mineral Resources, the New Mexico State Engineer, and the Bureau of Indian Affairs' San Juan Regional Uranium Study.
Resumo:
We use series expansion methods to calculate the dispersion relation of the one-magnon excitations for the spin-(1)/(2) triangular-lattice nearest-neighbor Heisenberg antiferromagnet above a three-sublattice ordered ground state. Several striking features are observed compared to the classical (large-S) spin-wave spectra. Whereas, at low energies the dispersion is only weakly renormalized by quantum fluctuations, significant anomalies are observed at high energies. In particular, we find rotonlike minima at special wave vectors and strong downward renormalization in large parts of the Brillouin zone, leading to very flat or dispersionless modes. We present detailed comparison of our calculated excitation energies in the Brillouin zone with the spin-wave dispersion to order 1/S calculated recently by Starykh, Chubukov, and Abanov [Phys. Rev. B74, 180403(R) (2006)]. We find many common features but also some quantitative and qualitative differences. We show that at temperatures as low as 0.1J the thermally excited rotons make a significant contribution to the entropy. Consequently, unlike for the square lattice model, a nonlinear sigma model description of the finite-temperature properties is only applicable at temperatures < 0.1J. Finally, we review recent NMR measurements on the organic compound kappa-(BEDT-TTF)(2)Cu-2(CN)(3). We argue that these are inconsistent with long-range order and a description of the low-energy excitations in terms of interacting magnons, and that therefore a Heisenberg model with only nearest-neighbor exchange does not offer an adequate description of this material.
Resumo:
The physical implementation of quantum information processing is one of the major challenges of current research. In the last few years, several theoretical proposals and experimental demonstrations on a small number of qubits have been carried out, but a quantum computing architecture that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is still lacking. In particular, a major ultimate objective is the construction of quantum simulators, yielding massively increased computational power in simulating quantum systems. Here we investigate promising routes towards the actual realization of a quantum computer, based on spin systems. The first one employs molecular nanomagnets with a doublet ground state to encode each qubit and exploits the wide chemical tunability of these systems to obtain the proper topology of inter-qubit interactions. Indeed, recent advances in coordination chemistry allow us to arrange these qubits in chains, with tailored interactions mediated by magnetic linkers. These act as switches of the effective qubit-qubit coupling, thus enabling the implementation of one- and two-qubit gates. Molecular qubits can be controlled either by uniform magnetic pulses, either by local electric fields. We introduce here two different schemes for quantum information processing with either global or local control of the inter-qubit interaction and demonstrate the high performance of these platforms by simulating the system time evolution with state-of-the-art parameters. The second architecture we propose is based on a hybrid spin-photon qubit encoding, which exploits the best characteristic of photons, whose mobility is exploited to efficiently establish long-range entanglement, and spin systems, which ensure long coherence times. The setup consists of spin ensembles coherently coupled to single photons within superconducting coplanar waveguide resonators. The tunability of the resonators frequency is exploited as the only manipulation tool to implement a universal set of quantum gates, by bringing the photons into/out of resonance with the spin transition. The time evolution of the system subject to the pulse sequence used to implement complex quantum algorithms has been simulated by numerically integrating the master equation for the system density matrix, thus including the harmful effects of decoherence. Finally a scheme to overcome the leakage of information due to inhomogeneous broadening of the spin ensemble is pointed out. Both the proposed setups are based on state-of-the-art technological achievements. By extensive numerical experiments we show that their performance is remarkably good, even for the implementation of long sequences of gates used to simulate interesting physical models. Therefore, the here examined systems are really promising buildingblocks of future scalable architectures and can be used for proof-of-principle experiments of quantum information processing and quantum simulation.
Resumo:
Full text: Semiconductor quantum dot lasers are attractive for multipletechnological applications in biophotonics. Simultaneous two-state lasing ofground state (GS) and excited state (ES) electrons and holes in QD lasers ispossible under a certain parameter range. It has already been investigated in steady-stateoperations and in dynamical regimes and is currently a subject of the intesiveresearch. It has been shown that the relaxation frequency in the two-state lasingregime is not a function of the total intensity [1], as could be traditionallyexpected.In this work we study damping relaxation oscillations in QD lasersimultaneously operating at two transitions, and find that under variouspumping conditions, the frequency of oscillations may decrease, increase orstay without change in time as shown in Fig1.The studied QD laser structure wasgrown on a GaAs substrate by molecular-beam epitaxy. The active region includedfive layers of self-assembled InAs QDs separated with a GaAs spacer from a5.3nm thick covering layer of InGaAs and processed into 4mm-wide mesa stripe devices. The 2.5mm long lasers withhigh-and antireflection coatings on the rear and front facets lasesimultaneously at the GS (around 1265nm) and ES (around 1190nm) in the wholerange of pumping. Pulsed electrical pumping obtained from a high power (up to2A current) pulse source was used to achieve high output power operation. We simultaneously detect the total output and merely ES output using aBragg filter transmitting the short-wavelength and reflecting the long-wavelengthradiation. Typical QD does not demonstrate relaxation oscillations frequencybecause of the strong damping [2]. It is confirmed for the low (I<0.68A) andhigh (I>1.2 A) range of the pump currents in our experiments. The situationis different for a short range of the medium currents (0.68Aandstarts to operate simultaneously. The frequency of oscillations may either significantlydecrease (from 2 GHz to 1 GHz) or sufficiently increase (from 2 GHz to 4 GHz)within 20 ns of the pulse duration. The oscilations appear simultaneously at GSand ES and are always damped, but can be either inphase or antiphase dependingon the pump current and temperature conditions. We address the excitation of the relaxation oscillations to non-instantaneousturn on of the pumping source which activates with 5ns rise time and discussthe swap of the oscillation's frequency in time to spectral shifts caused by thermaleffects. [1] M.Abusaa, J. Danckaert, E. A. Viktorov, and T. Erneux, Phys. Rev. A 87, 063827(2013). [2] T.Erneux, E. A. Viktorov, and P. Mandel, Phys. Rev. A 76,023819 (2007). 1 © 2014 IEEE.
Resumo:
In this thesis, results of the investigation of a new low-dimensional cobaltates Ba2-xSrxCoO 4 are presented. The synthesis of both polycrystalline and single crystalline compounds using the methods of conventional solid state chemical reaction and floating-zone optical furnace is first introduced. Besides making polycrystalline powders, we successfully, for the first time, synthesized large single crystals of Ba2CoO4. Single crystals were also obtained for Sr doped Ba2-xSrxCoO 4. Powder and single crystal x-ray diffraction results indicate that pure Ba2CoO4 has a monoclinic structure at room temperature. With Sr doping, the lattice structure changes to orthorhombic when x ≥ 0.5 and to tetragonal when x = 2.0. In addition, Ba2CoO4 and Sr2CoO4, have completely different basic building blocks in the structure. One is CoO4 tetrahedron and the later is CoO6 octahedron, respectively. Electronic and magnetic properties were characterized and discussed. The magnetic susceptibility, specific heat and thermal conductivity show that Ba2CoO4 has an antiferromagnetic (AF) ground state with an AF ordering temperature TN = 25 K. However, the magnitude of the Néel temperature TN is significantly lower than the Curie-Weiss temperature (:&thetas;: ∼ 110 K), suggesting either reduced-dimensional magnetic interactions and/or the existence of magnetic frustration. The AF interaction persists in all the samples with different doping concentrations. The Néel temperature doesn't vary much in the monoclinic structure regime but decreases when the system enters orthorhombic. Magnetically, Ba2CoO4 has an AF insulating ground state while Sr2CoO4 has a ferromagnetic (FM) metallic ground state. Neutron powder refinement results indicate a magnetic structure with the spin mostly aligned along the a-axis. The result from a μ-spin rotation/relaxation (μ+SR) experiment agrees with our refinement. It confirms the AF order in the ab -plane. We also studied the spin dynamics and its anisotropy in the AF phase. The results from inelastic neutron scattering show that spin waves have a clear dispersion along a-axis but not along c-axis, indicating spin anisotropy. This work finds the strong spin-lattice coupling in this novel complex material. The interplay between the two degrees of freedom results an interesting phase diagram. Further research is needed when large single crystal samples are available.
Resumo:
The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO 2 2+ dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340±0.010 eV. The fragmentation of energy selected CO 2 2+ ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from ∼38.7 to ∼41 eV above the ground state of neutral CO 2 has been observed in the experimental time window of ∼0.1-2.3 μs with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO ++O + formation in indirect dissociative double photoionization below the threshold for formation of CO 2 2+. The threshold for CO ++O + formation is found to be 35.56±0.10 eV or lower, which is more than 2 eV lower than previous measurements.
Resumo:
Although the transition metal chemistry of many dialkylamido ligands has been well studied, the chemistry of the bulky di(tert-butyl)amido ligand has been largely overlooked. The di(tert-butyl)amido ligand is well suited for synthesizing transition metal compounds with low coordination numbers; such compounds may exhibit interesting structural, physical, and chemical properties. Di(tert-butyl)amido complexes of transition metals are expected to exhibit high volatilities and low decomposition temperatures, thus making them well suited for the chemical vapor deposition of metals and metal nitrides. Treatment of MnBr₂(THF)₂, FeI₂, CoBr₂(DME), or NiBr₂(DME) with two equivalents of LiN(t-Bu)2 in benzene affords the two-coordinate complex M[N(t-Bu)₂]₂, where M is Mn, Fe, Co, or Ni. Crystallographic studies show that the M-N distances decrease across the series: 1.9365 (Mn), 1.8790 (Fe), 1.845 (Co), 1.798 Å (Ni). The N-M- N angles are very close to linear for Mn and Fe (179.30 and 179.45°, respectively), but bent for Co and Ni (159.2 and 160.90°, respectively). As expected, the d⁵ Mn complex has a magnetic moment of 5.53 μΒ that is very close to the spin only value. The EPR spectrum is nearly axial with a low E/D ratio of 0.014. The d⁶ Fe compound has a room temperature magnetic moment of 5.55 μΒ indicative of a large orbital angular momentum contribution. It does not exhibit a Jahn-Teller distortion despite the expected doubly degenerate ground state. Applied field Mössbauer spectroscopy shows that the effective internal hyperfine field is unusually large, Hint = 105 T. The magnetic moments of Co[N(t-Bu)₂]₂ and Ni[N(t-Bu)₂]₂ are 5.24 and 3.02 μΒ respectively. Both are EPR silent at 4.2 K. Treatment of TiCl₄ with three equivalents of LiN(t-Bu)2 in pentane affords the briding imido compound Ti₂[μ-N(t-Bu)]₂Cl₂[N(t-Bu)₂]₂ via a dealkylation reaction. Rotation around the bis(tert-butyl)amido groups is hindered, with activation parameters of ΔH‡ = 12.8 ± 0.6 kcal mol-1 and ΔS‡ = -8 ± 2 cal K-1 ·mol-1, as evidenced by variable temperature 1H NMR spectroscopy. Treatment of TiCl₄ with two equivalents of HN(t-Bu)₂ affords Ti₂Cl₆[N(t-Bu)₂]₂. This complex shows a close-contact of 2.634(3) Å between Ti and the carbon atom of one of the CH₃ substituents on the tert-butyl groups. Theoretical considerations and detailed structural comparisons suggest this interaction is not agostic in nature, but rather is a consequence of interligand repulsions. Treatment of NiI₂(PPh3)₂ and PdCl₂(PPh₃)₂ with LiN(t-Bu)₂in benzene affords Ni[N(t-Bu)₂](PPh₃)I and Pd₃(μ₂-NBut₂)2(μ₂-PPh₂)Ph(PPh₃) respectively. The compound Ni[N(t-Bu)₂](PPh₃)I has distorted T-shape in geometry, whereas Pd₃(μ₂-NBut₂)₂(μ₂-PPh₂)Ph(PPh₃) contains a triangular palladium core. Manganese nitride films were grown from Mn[N(t-Bu)₂]₂ in the presence of anhydrous ammonia. The growth rate was several nanometers per minute even at the remarkably low temperature of 80⁰C. As grown, the films are carbon- and oxygen-free, and have a columnar morphology. The spacings between the columns become smaller and the films become smoother as the growth temperature is increased. The composition of the films is consistent with a stoichiometry of Mn₅N₂.
Resumo:
We study the interspecies scattering properties of ultracold Li-Cs mixtures in their two energetically lowest spin channels in the magnetic field range between 800 and 1000 G. Close to two broad Feshbach resonances (FR) we create weakly bound LiCs dimers by radio-frequency association and measure the dependence of their binding energy on the external magnetic field strength. Based on the binding energies and complementary atom loss spectroscopy of three other Li-Cs s-wave FRs we construct precise molecular singlet and triplet electronic ground state potentials using a coupled-channels calculation. We extract the Li-Cs interspecies scattering length as a function of the external field and obtain almost a ten-fold improvement in the precision of the values for the pole positions and widths of the s-wave FRs as compared to our previous work (Pires et al 2014 Phys. Rev. Lett. 112 250404). We discuss implications on the Efimov scenario and the universal geometric scaling for LiCsCs trimers.
Resumo:
In the first part of this thesis we search for beyond the Standard Model physics through the search for anomalous production of the Higgs boson using the razor kinematic variables. We search for anomalous Higgs boson production using proton-proton collisions at center of mass energy √s=8 TeV collected by the Compact Muon Solenoid experiment at the Large Hadron Collider corresponding to an integrated luminosity of 19.8 fb-1.
In the second part we present a novel method for using a quantum annealer to train a classifier to recognize events containing a Higgs boson decaying to two photons. We train that classifier using simulated proton-proton collisions at √s=8 TeV producing either a Standard Model Higgs boson decaying to two photons or a non-resonant Standard Model process that produces a two photon final state.
The production mechanisms of the Higgs boson are precisely predicted by the Standard Model based on its association with the mechanism of electroweak symmetry breaking. We measure the yield of Higgs bosons decaying to two photons in kinematic regions predicted to have very little contribution from a Standard Model Higgs boson and search for an excess of events, which would be evidence of either non-standard production or non-standard properties of the Higgs boson. We divide the events into disjoint categories based on kinematic properties and the presence of additional b-quarks produced in the collisions. In each of these disjoint categories, we use the razor kinematic variables to characterize events with topological configurations incompatible with typical configurations found from standard model production of the Higgs boson.
We observe an excess of events with di-photon invariant mass compatible with the Higgs boson mass and localized in a small region of the razor plane. We observe 5 events with a predicted background of 0.54 ± 0.28, which observation has a p-value of 10-3 and a local significance of 3.35σ. This background prediction comes from 0.48 predicted non-resonant background events and 0.07 predicted SM higgs boson events. We proceed to investigate the properties of this excess, finding that it provides a very compelling peak in the di-photon invariant mass distribution and is physically separated in the razor plane from predicted background. Using another method of measuring the background and significance of the excess, we find a 2.5σ deviation from the Standard Model hypothesis over a broader range of the razor plane.
In the second part of the thesis we transform the problem of training a classifier to distinguish events with a Higgs boson decaying to two photons from events with other sources of photon pairs into the Hamiltonian of a spin system, the ground state of which is the best classifier. We then use a quantum annealer to find the ground state of this Hamiltonian and train the classifier. We find that we are able to do this successfully in less than 400 annealing runs for a problem of median difficulty at the largest problem size considered. The networks trained in this manner exhibit good classification performance, competitive with the more complicated machine learning techniques, and are highly resistant to overtraining. We also find that the nature of the training gives access to additional solutions that can be used to improve the classification performance by up to 1.2% in some regions.
Resumo:
We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors