916 resultados para glass plate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Periprosthetic femur fracture (PFF) is a serious complication after total hip arthroplasty that can be treated using different internal fixation devices. However, the outcomes with curved non-locking plates with eccentric holes in this indication have not been reported previously. The objectives of this study were to determine: (1) the union rate; (2) the complication rate; (3) autonomy in a group of patients with a Vancouver type B PFF who were treated with this plate. HYPOTHESIS: Use of this plate results in a high union rate with minimal mechanical complications. MATERIALS AND METHODS: Forty-three patients with a mean age of 79 years±13 (41-98) who had undergone fixation of Vancouver type B PFF with this plate between 2002 and 2007 were included in the study. The time to union and Parker Mobility Score were evaluated. The revision-free survival (all causes) was calculated using Kaplan-Meier analysis. The average follow-up was 42 months±20 (16-90). RESULTS: Union was obtained in all patients in a mean of 2.4 months±0.6 (2-4). One patient had varus malunion of the femur. The Parker Mobility Score decreased from 5.93±1.94 (2-9) to 4.93±1.8 (1-9) (P=0.01). Two patients required a surgical revision: one for an infection after 4.5 years and one for stem loosening. The survival of the femoral stem 5 years after fracture fixation was 83.3%±12.6%. CONCLUSION: Use of a curved plate with eccentric holes for treating type B PFF led to a high union rate and a low number of fixation-related complications. However, PFF remains a serious complication of hip arthroplasty that is accompanied by high morbidity and mortality rates. LEVEL OF EVIDENCE: Retrospective study, level IV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber-reinforced composite as oral implant material: Experimental studies of glass fiber and bioactive glass in vitro and in vivo Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland 2008. Biocompatibility and mechanical properties are important variables that need to be determined when new materials are considered for medical implants. Special emphasis was placed on these characteristics in the present work, which aimed to investigate the potential of fiber-reinforced composite (FRC) material as an oral implant. Furthermore, the purpose of this study was to explore the effect of bioactive glass (BAG) on osseointegration of FRC implants. The biocompatibility and mechanical properties of FRC implants were studied both in vitro and in vivo. The mechanical properties of the bulk FRC implant were tested with a cantilever bending test, torsional test and push-out test. The biocompatibility was first evaluated with osteoblast cells cultured on FRC substrates. Bone bonding was determined with the mechanical push-out test and histological as well as histomorplanimetric evaluation. Implant surface was characterized with SEM and EDS analysis. The results of these studies showed that FRC implants can withstand the static load values comparably to titanium. Threaded FRC implants had significantly higher push-out strength than the threaded titanium implants. Cell culture study revealed no cytotoxic effect of FRC materials on the osteoblast-like-cells. Addition of BAG particles enhanced cell proliferation and mineralization of the FRC substrates The in vivo study showed that FRC implants can withstand static loading until failure without fracture. The results also suggest that the FRC implant is biocompatible in bone. The biological behavior of FRC was comparable to that of titanium after 4 and 12 weeks of implantation. Furthermore, addition of BAG to FRC implant increases peri-implant osteogenesis and bone maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glasses with low silica content are very susceptible to suffer pronounced degradation when exposed to room atmosphere during short times. In this work the results of the degradation of the surface of a metasilicate glass with composition 2Na2O.1CaO.3SiO2 are presented. Optical and scanning electron microscopy observations, X-ray diffraction, infrared and Raman microprobe spectroscopic measurements of the modified surface of this glass show strong evidences that it is formed essentially by a crystalline carbonate layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the preparation and some optical properties of high refractive index TeO2-PbO-TiO2 glass system. Highly homogeneous glasses were obtained by agitating the mixture during the melting process in an alumina crucible. The characterization was done by X-ray diffraction, Raman scattering, light absorption and linear refractive index measurements. The results show a change in the glass structure as the PbO content increases: the TeO4 trigonal bipyramids characteristics of TeO2 glasses transform into TeO3 trigonal pyramids. However, the measured refractive indices are almost independent of the glass composition. We show that third-order nonlinear optical susceptibilities calculated from the measured refractive indices using Lines' theoretical model are also independent of the glass composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the work was to realize a high-speed digital data transfer system for RPC muon chambers in the CMS experiment on CERN’s new LHC accelerator. This large scale system took many years and many stages of prototyping to develop, and required the participation of tens of people. The system interfaces to Frontend Boards (FEB) at the 200,000-channel detector and to the trigger and readout electronics in the control room of the experiment. The distance between these two is about 80 metres and the speed required for the optic links was pushing the limits of available technology when the project was started. Here, as in many other aspects of the design, it was assumed that the features of readily available commercial components would develop in the course of the design work, just as they did. By choosing a high speed it was possible to multiplex the data from some the chambers into the same fibres to reduce the number of links needed. Further reduction was achieved by employing zero suppression and data compression, and a total of only 660 optical links were needed. Another requirement, which conflicted somewhat with choosing the components a late as possible was that the design needed to be radiation tolerant to an ionizing dose of 100 Gy and to a have a moderate tolerance to Single Event Effects (SEEs). This required some radiation test campaigns, and eventually led to ASICs being chosen for some of the critical parts. The system was made to be as reconfigurable as possible. The reconfiguration needs to be done from a distance as the electronics is not accessible except for some short and rare service breaks once the accelerator starts running. Therefore reconfigurable logic is extensively used, and the firmware development for the FPGAs constituted a sizable part of the work. Some special techniques needed to be used there too, to achieve the required radiation tolerance. The system has been demonstrated to work in several laboratory and beam tests, and now we are waiting to see it in action when the LHC will start running in the autumn 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glasspoly( methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2O5-11Na2O (BV11) and 44.5CaO-44.5P2O5-6Na2O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG)techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 6 0.02 wt % for BV11sil glass and 0.93 6 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 22 and HPO4 22 in its structure after soaking for 30 days occurred. VC 2013 Wiley Periodicals,Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000-000, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study illustrates the different types of plate heat exchangers that are commonly used in various domestic and industrial applications. The main purpose of this paper was to devise a methodology that is capable of calculating optimum number of plates in the design of a plate heat exchanger. To obtain the appropriate number of plates, typically several iterations must be made before a final acceptable design is completed, since plate amount depends on many factors such as, flow velocities, physical properties of the streams, flow channel geometry, allowable pressure drop, plate dimensions, and the gap between the plates. The methodology presented here can be used as a general guide for designing a plate heat exchanger. To investigate the effects of relevant parameters on the thermal-hydraulic design of a plate heat exchanger, several experiments were carried out for single-phase and counter flow arrangement with two brazed plate heat exchangers by varying the flow rates and the inlet temperatures of the fluid streams. The actual heat transfer coefficients obtained based on the experiment were nearly close to the calculated values and to improve the design, a correction factor was introduced. Besides, the effect of flow channel velocity on the pressure drop inside the unit is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we review some of the basic aspects of rare earth spectroscopy applied to vitreous materials. The characteristics of the intra-atomic free ion and ligand field interactions, as well as the formalisms of the forced electric dipole and dynamic coupling mechanisms of 4f-4f intensities, are outlined. The contribution of the later mechanism to the 4f-4f intensities is critically discussed, a point that has been commonly overlooked in the literature of rare earth doped glasses. The observed correlation between the empirical intensity parameter W2 and the covalence of the ion first coordination shell is discussed accordingly to the theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custombuilt optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.