942 resultados para generalized multiscale entropy
Resumo:
With the current concern over climate change, descriptions of how rainfall patterns are changing over time can be useful. Observations of daily rainfall data over the last few decades provide information on these trends. Generalized linear models are typically used to model patterns in the occurrence and intensity of rainfall. These models describe rainfall patterns for an average year but are more limited when describing long-term trends, particularly when these are potentially non-linear. Generalized additive models (GAMS) provide a framework for modelling non-linear relationships by fitting smooth functions to the data. This paper describes how GAMS can extend the flexibility of models to describe seasonal patterns and long-term trends in the occurrence and intensity of daily rainfall using data from Mauritius from 1962 to 2001. Smoothed estimates from the models provide useful graphical descriptions of changing rainfall patterns over the last 40 years at this location. GAMS are particularly helpful when exploring non-linear relationships in the data. Care is needed to ensure the choice of smooth functions is appropriate for the data and modelling objectives. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Uncertainty contributes a major part in the accuracy of a decision-making process while its inconsistency is always difficult to be solved by existing decision-making tools. Entropy has been proved to be useful to evaluate the inconsistency of uncertainty among different respondents. The study demonstrates an entropy-based financial decision support system called e-FDSS. This integrated system provides decision support to evaluate attributes (funding options and multiple risks) available in projects. Fuzzy logic theory is included in the system to deal with the qualitative aspect of these options and risks. An adaptive genetic algorithm (AGA) is also employed to solve the decision algorithm in the system in order to provide optimal and consistent rates to these attributes. Seven simplified and parallel projects from a Hong Kong construction small and medium enterprise (SME) were assessed to evaluate the system. The result shows that the system calculates risk adjusted discount rates (RADR) of projects in an objective way. These rates discount project cash flow impartially. Inconsistency of uncertainty is also successfully evaluated by the use of the entropy method. Finally, the system identifies the favourable funding options that are managed by a scheme called SME Loan Guarantee Scheme (SGS). Based on these results, resource allocation could then be optimized and the best time to start a new project could also be identified throughout the overall project life cycle.
Resumo:
Background: High rates of co-morbidity between Generalized Social Phobia (GSP) and Generalized Anxiety Disorder (GAD) have been documented. The reason for this is unclear. Family studies are one means of clarifying the nature of co-morbidity between two disorders. Methods: Six models of co-morbidity between GSP and GAD were investigated in a family aggregation study of 403 first-degree relatives of non-clinical probands: 37 with GSP, 22 with GAD, 15 with co-morbid GSP/GAD, and 41 controls with no history of GSP or GAD. Psychiatric data were collected for probands and relatives. Mixed methods (direct and family history interviews) were utilised. Results: Primary contrasts (against controls) found an increased rate of pure GSP in the relatives of both GSP probands and co-morbid GSP/GAD probands, and found relatives of co-morbid GSP/GAD probands to have an increased rate of both pure GAD and comorbid GSP/GAD. Secondary contrasts found (i) increased GSP in the relatives of GSP only probands compared to the relatives of GAD only probands; and (ii) increased GAD in the relatives of co-morbid GSP/GAD probands compared to the relatives of GSP only probands. Limitations: The study did not directly interview all relatives, although the reliability of family history data was assessed. The study was based on an all-female proband sample. The implications of both these limitations are discussed. Conclusions: The results were most consistent with a co-morbidity model indicating independent familial transmission of GSP and GAD. This has clinical implications for the treatment of patients with both disorders. (C) 2006 Elsevier B.V. All fights reserved.
Resumo:
Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.
Resumo:
In this paper, we introduce two kinds of graphs: the generalized matching networks (GMNs) and the recursive generalized matching networks (RGMNs). The former generalize the hypercube-like networks (HLNs), while the latter include the generalized cubes and the star graphs. We prove that a GMN on a family of k-connected building graphs is -connected. We then prove that a GMN on a family of Hamiltonian-connected building graphs having at least three vertices each is Hamiltonian-connected. Our conclusions generalize some previously known results.
Resumo:
Generalized cubes are a subclass of hypercube-like networks, which include some hypercube variants as special cases. Let theta(G)(k) denote the minimum number of nodes adjacent to a set of k vertices of a graph G. In this paper, we prove theta(G)(k) >= -1/2k(2) + (2n - 3/2)k - (n(2) - 2) for each n-dimensional generalized cube and each integer k satisfying n + 2 <= k <= 2n. Our result is an extension of a result presented by Fan and Lin [J. Fan, X. Lin, The t/k-diagnosability of the BC graphs, IEEE Trans. Comput. 54 (2) (2005) 176-184]. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Generalized honeycomb torus is a candidate for interconnection network architectures, which includes honeycomb torus, honeycomb rectangular torus, and honeycomb parallelogramic torus as special cases. Existence of Hamiltonian cycle is a basic requirement for interconnection networks since it helps map a "token ring" parallel algorithm onto the associated network in an efficient way. Cho and Hsu [Inform. Process. Lett. 86 (4) (2003) 185-190] speculated that every generalized honeycomb torus is Hamiltonian. In this paper, we have proved this conjecture. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The determination of the minimum size of a k-neighborhood (i.e., a neighborhood of a set of k nodes) in a given graph is essential in the analysis of diagnosability and fault tolerance of multicomputer systems. The generalized cubes include the hypercube and most hypercube variants as special cases. In this paper, we present a lower bound on the size of a k-neighborhood in n-dimensional generalized cubes, where 2n + 1 <= k <= 3n - 2. This lower bound is tight in that it is met by the n-dimensional hypercube. Our result is an extension of two previously known results. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A novel radix-3/9 algorithm for type-III generalized discrete Hartley transform (GDHT) is proposed, which applies to length-3(P) sequences. This algorithm is especially efficient in the case that multiplication is much more time-consuming than addition. A comparison analysis shows that the proposed algorithm outperforms a known algorithm when one multiplication is more time-consuming than five additions. When combined with any known radix-2 type-III GDHT algorithm, the new algorithm also applies to length-2(q)3(P) sequences.
Resumo:
We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Society