966 resultados para gelatin-SDS-PAGE
Resumo:
OBJECTIVES: To report a novel observation of neutrophil signal transduction abnormalities in patients with localized aggressive periodontitis (LAP) that are associated with an enhanced phosphorylation of the nuclear signal transduction protein cyclic AMP response element-binding factor (CREB). METHOD AND MATERIALS: Peripheral venous blood neutrophils of 18 subjects, 9 patients with LAP and 9 race-, sex-, and age-matched healthy controls, were isolated and prepared using the Ficoll-Hypaque density-gradient technique. Neutrophils (5.4 x 10(6)/mL) were stimulated with the chemoattractant FMLP (10(-6) mol/L) for 5 minutes and lysed. Aliquots of these samples were separated by SDS-PAGE (60 microg/lane) on 9.0% (w/v) polyacrylamide slab gels and transferred electrophoretically to polyvinyl difluoride membranes. The cell lysates were immunoblotted with a 1:1,000 dilution of rabbit-phospho-CREB antibody that recognizes only the phosphorylated form of CREB at Ser133. The activated CREB was visualized with a luminol-enhanced chemoluminescence detection system and evaluated by laser densitometry. RESULTS: In patients with LAP, the average activation of CREB displayed an overexpression for the unstimulated peripheral blood neutrophils of 80.3% (17.5-fold) compared to healthy controls (4.6%). CONCLUSION: LAP neutrophils who express their phenotype appear to be constitutively primed, as evidenced by activated CREB in resting cells compared to normal individuals. The genetically primed neutrophil phenotype may contribute to neutrophil-mediated tissue damage in the pathogenesis of LAP.
Protein changes and proteolytic degradation in red and white clover plants subjected to waterlogging
Resumo:
Red (Trifolium pratense L., cv. “Start”) and white clover varieties (Trifolium repens L., cv. “Debut” and cv. “Haifa”) were waterlogged for 14 days and subsequently recovered for the period of 21 days. Physiological and biochemical responses of the clover varieties were distinctive, which suggested different sensitivity toward flooding. The comparative study of morphological and biochemical parameters such as stem length, leaflet area, dry weight, protein content, protein pattern and proteolytic degradation revealed prominent changes under waterlogging conditions. Protease activity in the stressed plants increased significantly, especially in red clover cv. “Start”, which exhibited eightfold higher azocaseinolytic activity compared to the control. Changes in the protein profiles were detected by SDS-PAGE electrophoresis. The specific response of some proteins (Rubisco, Rubisco-binding protein, Rubisco activase, ClpA and ClpP protease subunits) toward the applied stress was assessed by immunoblotting. The results characterized the red clover cultivar “Start” as the most sensitive toward waterlogging, expressing reduced levels of Rubisco large and small subunits, high content of ClpP protease subunits and increased activity of protease isoforms.
Resumo:
A method employing isotopically- and photoaffinity-labeled probes and polyclonal and monoclonal antibody to the probes for the identification, isolation and recovery of protein receptors is described. Antibody was raised against N-(3-(p-azido-m-($\sp{125}$I) -iodophenyl)) propionate (AIPP) coupled to and photolyzed to BSA. The antibodies specifically bound AIPP-derivatized proteins. An isolation system was developed utilizing this probe and two antigenically identical reversible analogues. N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl)propionyl)amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) reacts with primary amines and N-(((3-p-azido-m-($\sp{125}$I) -iodophenyl)propionyl)amidoethyl)dithiopyridine ($\sp{125}$I-AIPP-PDA) reacts with reduced thiols. The applicability of the system was established by derivatizing known ligands (Transferrin and Interferon-alpha) with one of the probes. The ligand-probe was then allowed to interact with its receptor by incubation with SS5 lymphoma cells and cross-linked by photolysis at 300 nm. The photolyzed ligand/probe/receptor preparation was then recovered with AIPP antibody. Utilization of N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl-propionyl)-amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) allowed the components of the photolyzed complex to be separated by treatment with 2-mercaptoethanol in the SDS-PAGE solubilization buffer. Ligand and receptor labeling were then assessed by Coomassie staining and autoradiography. Results of receptor assays suggest that $\sp{125}$I-AIPP was, indeed, transferred to moieties that represent the receptors for both Transferrin and Interferon-alpha. ^
Resumo:
The cytochrome P450 (P450) monooxygenase system plays a major role in metabolizing a wide variety of xenobiotic as well as endogenous compounds. In performing this function, it serves to protect the body from foreign substances. However, in a number of cases, P450 activates procarcinogens to cause harm. In most animals, the highest level of activity is found in the liver. Virtually all tissues demonstrate P450 activity, though, and the role of the P450 monooxygenase system in these other organs is not well understood. In this project I have studied the P450 system in rat brain; purifying NADPH-cytochrome P450 reductase (reductase) from that tissue. In addition, I have examined the distribution and regulation of expression of reductase and P450 in various anatomical regions of the rat brain.^ NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by SDS-PAGE and Western blot techniques. Kinetic studies utilizing cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P4501A1 as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. These results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.^ Since the brain is not a homogeneous organ, dependent upon the well orchestrated interaction of numerous parts, pathology in one nucleus may have a large impact upon its overall function. Hence, the anatomical distribution of the P450 monooxygenase system in brain is important in elucidating its function in that organ. Related to this is the regulation of P450 expression in brain. In order to study these issues female rats--both ovariectomized and not--were treated with a number of xenobiotic compounds and sex steroids. The brains from these animals were dissected into 8 discrete regions and the presence and relative level of message for P4502D and reductase determined using polymerase chain reaction. Results of this study indicate the presence of mRNA for reductase and P4502D isoforms throughout the rat brain. In addition, quantitative PCR has allowed the determination of factors affecting the expression of message for these enzymes. ^
Resumo:
A means of analyzing protein quaternary structure using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI MS) and chemical crosslinking was evaluated. Proteins of known oligomeric structure, as well as monomeric proteins, were analyzed to evaluate the method. The quaternary structure of proteins of unknown or uncertain structure was investigated using this technique. The stoichiometry of recombinant E. coli carbamoyl phosphate synthetase and recombinant human farnesyl protein transferase were determined to be heterodimers using glutaraldehyde crosslinking, agreeing with the stoichiometry found for the wild type proteins. The stoichiometry of the gamma subunit of E. coli DNA polymerase III holoenzyme was determined in solution without the presence of other subunits to be a homotetramer using glutaraldehyde crosslinking and MALDI MS analysis. Chi and psi subunits of E. coli DNA polymerase III subunits appeared to form a heterodimer when crosslinked with heterobifunctional photoreactive crosslinkers.^ Comparison of relative % peak areas obtained from MALDI MS analysis of crosslinked proteins and densitometric scanning of silver stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels showed excellent qualitative agreement for the two techniques, but the quantitative analyses differed, sometimes significantly. This difference in quantitation could be due to SDS-PAGE conditions (differential staining, loss of sample) or to MALDI MS conditions (differences in ionization and/or detection). Investigation of pre-purified crosslinked monomers and dimers recombined in a specific ratio revealed the presence of mass discrimination in the MALDI MS process. The calculation of mass discrimination for two different MALDI time-of-flight instruments showed the loss of a factor of approximately 2.6 in relative peak area as the m/z value doubles over the m/z range from 30,000 to 145,000 daltons.^ Indirect symmetry was determined for tetramers using glutaraldehyde crosslinking with MALDI MS analysis. Mathematical modelling and simple graphing allowed the determination of the symmetry for several tetramers known to possess isologous D2 symmetry. These methods also distinguished tetramers that did not fit D2 symmetry such as apo-avidin. The gamma tetramer of E. coli DNA polymerase III appears to have isologous D2 symmetry. ^
Resumo:
The cytochromes P450 (P450) comprise a superfamily of hemoproteins that function in concert with NADPH-cytochrome P450 reductase (P450-reductase) to metabolize both endogenous and exogenous compounds. Many pharmacological agents undergo phase I metabolism by this P450 and P450-reductase monooxygenase system. Phase I metabolism ensures that these highly hydrophobic xenobiotics are made more hydrophilic, and hence easier to extrude from the body. While the majority of phase I metabolism occurs in the liver, metabolism in extrahepatic organ-systems like the intestine, kidney, and brain can have important roles in drug metabolism and/or efficacy. ^ While P450-mediated phase I metabolism has been well studied, investigators have only recently begun to elucidate what physiological roles P450 may have. One way to approach this question is to study P450s that are highly or specifically expressed in extrahepatic tissues. In this project I have studied the role of a recently cloned P450 family member, P450 2D18, that was previously shown to be expressed in the rat brain and kidney, but not in the liver. To this end, I have used the baculovirus expression system to over-express recombinant P450 2D18 and purified the functional enzyme using nickel and hydroxylapatite chromatography. SDS-PAGE analysis indicated that the enzyme was purified to electrophoretic homogeneity and Western analysis showed cross-reactivity with rabbit anti-human P450 2D6. Carbon monoxide difference spectra indicated that the purified protein contained no denatured P450 enzyme; this allowed for further characterization of the substrates and metabolites formed by P450 2D18-mediated metabolism. ^ Because P450 2D18 is expressed in brain, we characterized the activity toward several psychoactive drugs including the antidepressants imipramine and desipramine, and the anti-psychotic drugs chlorpromazine and haloperidol. P450 2D18 preferentially catalyzed the N-demethylation of imipramine, desipramine, and chlorpromazine. This is interesting given the fact that other P450 isoforms form multiple metabolites from such compounds. This limited metabolic profile might suggest that P450 2D18 has some unique function, or perhaps a role in endobiotic metabolism. ^ Further analysis of possible endogenous substrates for P450 2D18 led to the identification of dopamine and arachidonic acid as substrates. It was shown that P450 2D18 catalyzes the oxidation of dopamine to aminochrome, and that the enzyme binds dopamine with an apparent KS value of 678 μM, a value well within reported dopamine concentration in brain dopaminergic systems. Further, it was shown that P450 2D18 binds arachidonic acid with an apparent KS value of 148 μM, and catalyzes both the ω-hydroxylation and epoxygenation of arachidonic acid to metabolites that have been shown to have vasoactive properties in brain, kidney, and heart tissues. These data provide clues for endogenous roles of P450 within the brain, and possible involvement in the pathogenesis of Parkinson's disease. ^
Resumo:
This dissertation addressed the hypothesis that the unique tumor specific transplantation antigens (TSTA) of chemically induced sarcomas express epitopes encoded by endogenous viral genes. TSTA from two 3-methylcholanthrene-induced, C3H/HeJ fibrosarcomas (MCA-F and MCA-D) were serologically assessed for viral epitopes in an enzyme-linked immunospecific assay (ELISA) and by immunoaffinity chromatography. Initial evidence with an anti-TSTA antiserum suggested that TSTA were associated with mouse mammary tumor virus (MMTV) peptides, but not peptides from murine leukemia virus (MuLV). TSTA extracted from MCA-F, was assessed with specific anti viral antibodies at three levels of purification for its association with MuLV peptides (gp 70 and p 15E) and MMTV peptides (gp52, gp36 and p27). The results demonstrate that purified preparations enriched for TSTA activity are devoid of MuLV epitopes, but enriched for a subset of MMTV epitopes. Immunoaffinity supports constructed with anti-MMTV antibodies retained TSTA from partially purified MCA-F or MCA-D extracts. Immunoaffinity chromatography with antibodies against individual MMTV peptides demonstrated that the MCA-F TSTA was specifically retained by anti-gp36 and anti-p27 supports, but not by anti-gp52 supports nor a support made with bovine serum albumin. Analysis of the affinity purified TSTA preparations by HPGPC and SDS-PAGE revealed only a few components. Application of the anti-gp36 and anti-p27 retained materials to HPGPC and subsequent in vivo analysis demonstrated that the TSTA migrated in a low and a high molecular weight region. These results suggest that TSTA specificity in C3H/HeJ mice, results from MMTV recombinant proteins. ^
Resumo:
With the aim of characterizing specific immunogenic proteins of Mycoplasma mycoides subsp. mycoides small colony (SC) type, the aetiological agent of contagious bovine pleuropneumonia, a gene encoding a major immunogenic protein of 72 kDa named P72 was cloned and expressed in Escherichia coli. The expressed protein was of the same apparent molecular mass as that produced by the parent strain. The predicted molecular mass of P72, based on the DNA-deduced amino acid sequence, was 61.118 kDa, significantly lower than the apparent molecular mass of endogenous or recombinant P72 on SDS-PAGE. Analysis of the amino acid sequence revealed a typical prokaryotic signal peptidase II-membrane lipoprotein lipid attachment site and a transmembrane structure domain in the leader sequence at the amino-terminal end of the protein. P72 was shown to be a lipoprotein and its surface location was confirmed by trypsin treatment of whole cells. An unassigned gene encoding a peptide with some similarity to P72 was found on the genome sequence of M. capricolum subsp. capricolum but not on that of Mycoplasma genitalium. The P72 gene was detected in 11/11 M. mycoides subsp. mycoides SC strains. Antiserum against recombinant P72 reacted strongly with 12/12 strains of M. mycoides subsp. mycoides SC, weakly with Mycoplasma bovine group 7 strain PG50, but not with other members of the 'mycoides cluster' or closely related mycoplasmas. Cows experimentally contact-infected with M. mycoides subsp. mycoides SC developed a humoral response against P72 within 35 d. P72 is a specific antigenic membrane lipoprotein of M. mycoides subsp. mycoides SC with potential for use in development of diagnostic reagents. It seems to belong to a family of lipoproteins of the "mycoides cluster'.
Resumo:
The transient receptor potential channel, TRPM4, and its closest homolog, TRPM5, are non-selective cation channels that are activated by an increase in intracellular calcium. They are expressed in many cell types, including neurons and myocytes. Although the electrophysiological and pharmacological properties of these two channels have been previously studied, less is known about their regulation, in particular their post-translational modifications. We, and others, have reported that wild-type (WT) TRPM4 channels expressed in HEK293 cells, migrated on SDS-PAGE gel as doublets, similar to other ion channels and membrane proteins. In the present study, we provide evidence that TRPM4 and TRPM5 are each N-linked glycosylated at a unique residue, Asn(992) and Asn(932), respectively. N-linked glycosylated TRPM4 is also found in native cardiac cells. Biochemical experiments using HEK293 cells over-expressing WT TRPM4/5 or N992Q/N932Q mutants demonstrated that the abolishment of N-linked glycosylation did not alter the number of channels at the plasma membrane. In parallel, electrophysiological experiments demonstrated a decrease in the current density of both mutant channels, as compared to their respective controls, either due to the Asn to Gln mutations themselves or abolition of glycosylation. To discriminate between these possibilities, HEK293 cells expressing TRPM4 WT were treated with tunicamycin, an inhibitor of glycosylation. In contrast to N-glycosylation signal abolishment by mutagenesis, tunicamycin treatment led to an increase in the TRPM4-mediated current. Altogether, these results demonstrate that TRPM4 and TRPM5 are both N-linked glycosylated at a unique site and also suggest that TRPM4/5 glycosylation seems not to be involved in channel trafficking, but mainly in their functional regulation.
Resumo:
Analysis of human serum reactivities to antigenic components of soluble Taenia solium metacestode proteins showed the predominant presence of determinants shared by T. solium, Echinococcus multilocularis and E. granulosus. Two polypeptides were demonstrated by SDS-PAGE and Western blot or enzyme-linked immunoelectrotransfer blot (EITB) assay to bind serum and CSF antibodies only from T. solium cysticercosis patients. These species-specific antigenic polypeptides focused between pH 4.6 and 3.9 after resolution by isoelectric focusing followed by EITB. The high species-specificity demonstrated by the present techniques offers the opportunity to confirm serologically an infection by T. solium metacestode.
Resumo:
Two batches of excretory/secretory (E/S) antigens from second stage larvae of Toxocara canis maintained in vitro were prepared independently in two different laboratories (Zürich and Basel) and analysed in order to obtain information for future efforts to standardize the enzyme-linked immunosorbent assay (ELISA) used for the serodiagnosis of human toxocariasis. SDS-PAGE and "Western-blotting" revealed at least 10 different antigenic components common to the two antigen preparations. However, distinct qualitative and quantitative differences among the two E/S-antigens were observed, since one antigen had a more complex composition than the other. Despite these differences, an accordance of serodiagnosis was obtained in 80% of 25 sera from patients with suspected Toxocara infection tested independently in two different ELISA systems (Basel and Zürich) with the corresponding E/S-antigens. The specificity was 93% as determined (BS-antigen, BS-ELISA) by testing 46 out of 3396 sera from patients with parasitologically proven extra-intestinal helminthic infections. Cross-reactions occurred mainly with sera from patients infected with filariae (5 from 13 cases) exhibiting very high extinction values in their homologous ELISA-system. The reproducibility (intra- and inter-test variations) of two ELISA systems using the corresponding E/S-antigens varied from 5-15%. The results demonstrate that T. canis E/S-antigens may well be applicable for standardization of the ELISA used for the serodiagnosis of human toxocariasis.
Resumo:
A polypeptide (Em2a) purified by affinity chromatography from the Echinococcus multilocularis metacestode showed a high degree of purity as assayed by SDS-PAGE and analytical isoelectrical focusing. A minor contamination with host albumin was revealed. Estimation of relative mol. mass gave a value of 54,000. The isoelectric point was found to be 4.8. Antigenic activity of the polypeptide was demonstrated by immunoprecipitation and western blotting. In these assays the protein was recognized only by homologous sera from patients infected with larval E. multilocularis. This antigen (Em2a) did not react in the ELISA with sera from patients infected with heterologous helminths; these sera were highly cross-reacting with antigen from E. granulosus hydatid fluid. Seventy-three (94%) from 78 investigated patients (alveolar echinococcosis) showed a seropositive reaction with the polypeptide Em2a.
Resumo:
Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity, and it has been shown to activate coagulation factors. Here we studied the effects of MASP-1 on clot formation in whole blood (WB) and platelet-poor plasma (PPP) by thrombelastography and further elucidated the underlying mechanism. Cleavage of prothrombin by MASP-1 was investigated by SDS-PAGE and N-terminal sequencing of cleavage products. Addition of MASP-1 or thrombin to WB and PPP shortened the clotting time and clot formation time significantly compared to recalcified-only samples. The combination of MASP-1 and thrombin had additive effects. In a purified system, MASP-1 was able to induce clotting only in presence of prothrombin. Analysis of MASP-1-digested prothrombin confirmed that MASP-1 cleaves prothrombin at three cleavage sites. In conclusion, we have shown that MASP-1 is able to induce and promote clot formation measured in a global setting using the technique of thrombelastography. We further confirmed that MASP-1-induced clotting is dependent on prothrombin. Finally, we have demonstrated that MASP-1 cleaves prothrombin and identified its cleavage sites, suggesting that MASP-1 gives rise to an alternative active form of thrombin by cleaving at the cleavage site R393.
Resumo:
Osteogenesis imperfecta (OI) is a heritable connective tissue disease characterized by bone fragility and increased risk of fractures. Up to now, mutations in at least 18 genes have been associated with dominant and recessive forms of OI that affect the production or post-translational processing of procollagen or alter bone homeostasis. Among those, SERPINH1 encoding heat shock protein 47 (HSP47), a chaperone exclusive for collagen folding in the ER, was identified to cause a severe form of OI in dachshunds (L326P) as well as in humans (one single case with a L78P mutation). To elucidate the disease mechanism underlying OI in the dog model, we applied a range of biochemical assays to mutant and control skin fibroblasts as well as on bone samples. These experiments revealed that type I collagen synthesized by mutant cells had decreased electrophoretic mobility. Procollagen was retained intracellularly with concomitant dilation of ER cisternae and activation of the ER stress response markers GRP78 and phospho-eIF2α, thus suggesting a defect in procollagen processing. In line with the migration shift detected on SDS-PAGE of cell culture collagen, extracts of bone collagen from the OI dog showed a similar mobility shift, and on tandem mass spectrometry, the chains were post-translationally overmodified. The bone collagen had a higher content of pyridinoline than control dog bone. We conclude that the SERPINH1 mutation in this naturally occurring model of OI impairs how HSP47 acts as a chaperone in the ER. This results in abnormal post-translational modification and cross-linking of the bone collagen.
Resumo:
This report is aimed at elucidating the effect of mannitol and cold treatments on P uptake and protein phosphorylation in Lemna minor plants. Duckweed p lants were incu bated in the presence of [32P]or [33P]Pi in half-strength phosphate deprived E-medium under constant light regime for 1.5 h. Total plant protein extracts (pellet and supernatant) were then prepared and subjected to IEF x SDS-PAGE. To analyse the effect of the stresses on P uptake and protein labelling, Lemna minor plants were preincubated with 0.1, 0.5 mol · L-1 mannitol and at 4°C respectively, for 4 hours, before adding labelled orthophosphate. The results show that the general protein phosphorylation (including LHCII) is related to the level of P uptake. Radioactive phosphate incorporation is stimulated by a low concentration of mannitol (0.1 mol · L-1) but reduced by 0.5 mol · L-1 mannitol and cold stress in planta. The labelling into proteins is affected neither when stresses were applied to the plants after incubation with labelled orthophosphate, nor after in vitro protein phosphorylation. This indicates that general protein kinase activities in vivo are strictly limited by P uptake. A marked accumulation of soluble hexoses (mainly sucrose, glucose, and fructose) is observed under imposed stress, suggesting that the inhibition of P uptake in response to hyperosmotic and cold stresses is mediated by sugar accumulation in situ. However, metabolisable sugars like glucose did not alter the entry of phosphate at concentrations of 0.5 mol · L-1, showing that the chemical nature of the osmoticum influences P uptake.