994 resultados para gas spectral radiation
Resumo:
A model for binary mixture adsorption accounting for energetic heterogeneity and intermolecular interactions is proposed in this paper. The model is based on statistical thermodynamics, and it is able to describe molecular rearrangement of a mixture in a nonuniform adsorption field inside a cavity. The Helmholtz free energy obtained in the framework of this approach has upper and lower limits, which define a permissible range in which all possible solutions will be found. One limit corresponds to a completely chaotic distribution of molecules within a cavity, while the other corresponds to a maximum ordered molecular structure. Comparison of the nearly ideal O-2-N-2-zeolite NaX system at ambient temperature with the system Of O-2-N-2-zeolite CaX at 144 K has shown that a decrease of temperature leads to a molecular rearrangement in the cavity volume, which results from the difference in the fluid-solid interactions. The model is able to describe this behavior and therefore allows predicting mixture adsorption more accurately compared to those assuming energetic uniformity of the adsorption volume. Another feature of the model is its ability to correctly describe the negative deviations from Raoult's law exhibited by the O-2-N-2-CaX system at 144 K. Analysis of the highly nonideal CO2-C2H6-zeolite NaX system has shown that the spatial molecular rearrangement in separate cavities is induced by not only the ion-quadrupole interaction of the CO2 molecule but also the significant difference in molecular size and the difference between the intermolecular interactions of molecules of the same species and those of molecules of different species. This leads to the highly ordered structure of this system.
Resumo:
In this paper we analyzed the adsorption of gases and vapors on graphitised thermal carbon black by using a modified DFT-lattice theory, in which we assume that the behavior of the first layer in the adsorption film is different from those of second and higher layers. The effects of various parameters on the topology of the adsorption isotherm were first investigated, and the model was then applied in the analysis of adsorption data of numerous substances on carbon black. We have found that the first layer in the adsorption film behaves differently from the second and higher layers in such a way that the adsorbate-adsorbate interaction energy in the first layer is less than that of second and higher layers, and the same is observed for the partition function. Furthermore, the adsorbate-adsorbate and adsorbate-adsorbent interaction energies obtained from the fitting are consistently lower than the corresponding values obtained from the viscosity data and calculated from the Lorentz-Berthelot rule, respectively.
Resumo:
The authors investigated the effect of manual hyperinflation (MHI) with set parameters applied to patients on mechanical ventilation on hemodynamics, respiratory mechanics, and gas exchange. Sixteen critically ill patients post-septic shock, with acute lung injury, were studied. Heart rate, arterial pressure, and mean pulmonary artery pressure were recorded every minute. pulmonary artery occlusion pressure, cardiac output, arterial blood gases, and dynamic compliance (C-dyn) were recorded pre- and post-MHI. From this, systemic vascular resistance index (SVRI), cardiac index, oxygen delivery, and partial pressure of oxygen:fraction of inspired oxygen (PaO2:FiO(2)) ratio were calculated. There were significant increases in SVRI (P < 0.05) post-MHI and diastolic arterial pressure (P < 0.01)during MHI. C-dyn increased post-MHI (P < 0.01) and was sustained at 20 minutes post-MHI (P < 0.01). Subjects with an intrapulmonary cause of lung disease had a significant decrease (P = 0.02) in PaO2:FiO(2), and those with extrapulmonary causes of lung disease had a significant increase (P < 0.001) in PaO2:FiO(2) post-MHI. In critically ill patients, MHI resulted in an improvement in lung mechanics and an improvement in gas exchange in patients with lung disease due to extrapulmonary events and did not result in impairment of the cardiovascular system.
Resumo:
Streptococcus pyogenes isolates from a tropical region and a subtropical region of Australia with high and low incidences of severe streptococcal diseases, respectively, were analyzed for speA, speB, and speC gene distributions and NAD-glycohydrolase expression. No direct correlation of these characteristics with a propensity to cause invasive diseases was observed.
Resumo:
A radiation of five species of giant tortoises (Cylindraspis ) existed in the southwest Indian Ocean, on the Mascarene islands, and another (of Aldabrachelys ) has been postulated on small islands north of Madagascar, from where at least eight nominal species have been named and up to five have been recently recognized. Of 37 specimens of Madagascan and small-island Aldabrachelys investigated by us, 23 yielded significant portions of a 428-base-pair (bp) fragment of mitochondrial (cytochrome b and tRNA-Glu), including type material of seven nominal species (A. arnoldi, A. dussumieri, A. hololissa, A. daudinii, A. sumierei, A. ponderosa and A. gouffei ). These and nearly all the remaining specimens, including 15 additional captive individuals sequenced previously, show little variation. Thirty-three exhibit no differences and the remainder diverge by only 1-4 bp (0.23-0.93%). This contrasts with more widely accepted tortoise species which show much greater inter- and intraspecific differences. The non-Madagascan material examined may therefore only represent a single species and all specimens may come from Aldabra where the common haplotype is known to occur. The present study provides no evidence against the Madagascan origin for Aldabra tortoises suggested by a previous molecular phylogenetic analysis, the direction of marine currents and phylogeography of other reptiles in the area. Ancient mitochondrial DNA from the extinct subfossil A. grandidieri of Madagascar differs at 25 sites (5.8%) from all other Aldabrachelys samples examined here.
Resumo:
A suite of allenic hydrocarbons, previously unknown as a molecular class from insects, has been characterized from several Australian melolonthine scarab beetles. The allenes are represented by the formula CH3(CH2)nCH=.=CH(CH2)(7)CH3 with n being 11-15, 17 and 19, and thus, all have Delta(9,10)-unsaturation. These structures have been confirmed by syntheses and comparisons of spectral and chromatographic properties with those of the natural components. The enantiomers of (+/-)-Delta(9,10)-tricosadiene and Delta(9,10)-pentacosadiene were separable on a modified beta-cyclodextrin column (gas chromatography), and the natural Delta(9,10)-tricosadiene (n = 11) and Delta(9,10)-pentacosadiene (n = 13) were shown to be of >85% ee. Syntheses of nonracemic allenes of known predominating chirality were acquired using both organotin chemistry and sulfonylhydrazine intermediates, and comparisons then demonstrated that the natural allenes were predominantly (R)-configured.
Resumo:
Previous studies have shown that a deficiency in DNA damage repair is associated with increased cancer risk, and exposure to UV radiation is a major risk factor for the development of malignant melanoma. High density of common nevi (moles) is a major risk factor for cutaneous melanoma. A nevus may result from a mutation in a single UV-exposed melanocyte which failed to repair DNA damage in one or more critical genes. XRCC3 and XRCC5 may have an effect on nevus count through their function as components of DNA repair processes that may be involved directly or indirectly in the repair of DNA damage due to UV radiation. This study aims to test the hypothesis that the frequency of flat or raised moles is associated with polymorphism at or near these DNA repair genes, and that certain alleles are associated with less efficient DNA repair, and greater nevus density. Twins were recruited from schools in south eastern Queensland and were examined close to their 12th birthday. Nurses examined each individual and counted all moles on the entire body surface. A 10cM genome scan of 274 families (642 individuals) was performed and microsatellite polymorphisms in XRCC3 and adjacent to XRCC5 were also typed. Linkage and association of nevus count to these loci were tested simultaneously using a structural-equation modeling approach implemented in MX. There is weak evidence for linkage of XRCC5 to a QTL influencing raised mole count, and also weak association. There is also weak evidence for association between flat mole count and XRCC3. No tests were significant after correction for testing multiple alleles, nor were any of the tests for total association significant. If variation in XRCC3 or XRCC5 influences UV sensitivity, and indirectly affects nevus density, then the effects are small.
Resumo:
Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.
Resumo:
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NES1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G2/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G2 checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G2/M checkpoint.
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
There are several competing methods commonly used to solve energy grained master equations describing gas-phase reactive systems. When it comes to selecting an appropriate method for any particular problem, there is little guidance in the literature. In this paper we directly compare several variants of spectral and numerical integration methods from the point of view of computer time required to calculate the solution and the range of temperature and pressure conditions under which the methods are successful. The test case used in the comparison is an important reaction in combustion chemistry and incorporates reversible and irreversible bimolecular reaction steps as well as isomerizations between multiple unimolecular species. While the numerical integration of the ODE with a stiff ODE integrator is not the fastest method overall, it is the fastest method applicable to all conditions.
Resumo:
Although ATM, the protein defective in ataxia-telangiectasia (A-T), is activated primarily by radiation, there is also evidence that expression of the protein can be regulated by both radiation and growth factors. Computer analysis of the ATM promoter proximal 700-bp sequence reveals a number of potentially important cis-regulatory sequences. Using nucleotide substitutions to delete putative functional elements in the promoter of ATM, we examined the importance of some of these sites for both the basal and the radiation-induced activity of the promoter. In lymphoblastoid cells, most of the mutations in transcription factor consensus sequences [Sp1(1), Sp1(2), Cre, Ets, Xre, gammaIre(2), a modified AP1 site (Fse), and GCF] reduced basal activity to various extents, whereas others [gammaIre(1), NF1, Myb] left basal activity unaffected. In human skin fibroblasts, results were generally the same, but the basal activity varied up to 8-fold in these and other cell lines. Radiation activated the promoter approximately 2.5-fold in serum-starved lymphoblastoid cells, reaching a maximum by 3 hr, and all mutated elements equally blocked this activation. Reduction in Sp1 and AP1 DNA binding activity by serum starvation was rapidly reversed by exposure of cells to radiation. This reduction was not evident in A-T cells, and the response to radiation was less marked. Data provided for interaction between ATM and Sp1 by protein binding and co-immunoprecipitation could explain the altered regulation of Sp1 in A-T cells. The data described here provide additional evidence that basal and radiation-induced regulation of the ATM promoter is under multifactorial control. (C) 2003 Wiley-Liss, Inc.
Resumo:
The two steps of nitrification, namely the oxidation of ammonia to nitrite and nitrite to nitrate, often need to be considered separately in process studies. For a detailed examination, it is desirable to monitor the two-step sequence using online measurements. In this paper, the use of online titrimetric and off-gas analysis (TOGA) methods for the examination of the process is presented. Using the known reaction stoichiometry, combination of the measured signals (rates of hydrogen ion production, oxygen uptake and carbon dioxide transfer) allows the determination of the three key process rates, namely the ammonia consumption rate, the nitrite accumulation rate and the nitrate production rate. Individual reaction rates determined with the TOGA sensor under a number of operation conditions are presented. The rates calculated directly from the measured signals are compared with those obtained from offline liquid sample analysis. Statistical analysis confirms that the results from the two approaches match well. This result could not have been guaranteed using alternative online methods. As a case study, the influences of pH and dissolved oxygen (DO) on nitrite accumulation are tested using the proposed method. It is shown that nitrite accumulation decreased with increasing DO and pH. Possible reasons for these observations are discussed. (C) 2003 Elsevier Science Ltd. All rights reserved.