946 resultados para free-surface flow
Resumo:
BACKGROUND: The aim of our study was the investigation of a novel navigator-gated three-dimensional (3D) steady-state free-precession (SSFP) sequence for free-breathing renal magnetic resonance angiography (MRA) without contrast medium, and to examine the advantage of an additional inversion prepulse for improved contrast. METHODS: Eight healthy volunteers (mean age 29 years) and eight patients (mean age 53 years) were investigated on a 1.5 Tesla MR system (ACS-NT, Philips, Best, The Netherlands). Renal MRA was performed using three navigator-gated free-breathing cardiac-triggered 3D SSFP sequences [repetition time (TR) = 4.4 ms, echo time (TE) = 2.2 ms, flip angle 85 degrees, spatial resolution 1.25 x 1.25 x 4.0 mm(3), scanning time approximately 1 minute 30 seconds]. The same sequence was performed without magnetization preparation, with a non-slab selective and a slab-selective inversion prepulse. Signal-to-noise ratio (SNR), contrast-to-noise (CNR) vessel length, and subjective image quality were compared. RESULTS: Three-dimensional SSFP imaging combined with a slab-selective inversion prepulse enabled selective and high contrast visualization of the renal arteries, including the more distal branches. Standard SSFP imaging without magnetization preparation demonstrated overlay by veins and renal parenchyma. A non-slab-selective prepulse abolished vessel visualization. CNR in SSFP with slab-selective inversion was 43.6 versus 10.6 (SSFP without magnetization preparation) and 0.4 (SSFP with non-slab-selective inversion), P < 0.008. CONCLUSION: Navigator-gated free-breathing cardiac-triggered 3D SSFP imaging combined with a slab-selective inversion prepulse is a novel, fast renal MRA technique without the need for contrast media.
Resumo:
Background: Beryllium sensitization (BeS) is caused by exposure to beryllium in the workplace and may progress to chronic beryllium disease (CBD). This granulomatous lung disorder mimicks sarcoidosis clinically, but is characterized by beryllium specific CD4+ T-cells immune response. BeS is classically detected by beryllium lymphocyte proliferation test (BeLPT), but this assay requires radioactivity and is not very sensitive. In the context of a study aiming to evaluate if CBD patients are misdiagnosed as sarcoidosis patients in Switzerland, we developed EliSpot and CFSE beryllium flow cytometric test. Methods: 23 patients considered as having sarcoidosis (n = 21), CBD (n = 1) and possible CBD (n = 1) were enrolled. Elispot was performed using plate covered with gamma-IFN mAb. Cells were added to wells and incubated overnight at 37 °C with medium (neg ctrl), SEB (pos ctrl) or BeSO4 at 1, 10 and 100 microM. Anti-IFN-gamma biotinylated mAb were added and spots were visualized using streptavidinhorseradish peroxidase and AEC substrate reagent. Results were reported as spot forming unit (SFU). For Beryllium specific CFSE flow cytometry analysis, CFSE labelled cells were cultured in the presence of SEB and 1, 10 or 100 microM BeSO4. Unstimulated CFSE labeled cells were defined as controls. The cells were incubated for 6 days at 37 °C and 5% CO2. Surface labelling of T-lymphocytes and vivid as control of cells viability was performed at the time of harvest. Results: Using EliSpot technology, we were able to detect a BeS in 1/23 enrolled patients with a mean of 780 SFU (cut off value at 50 SFU). This positive result was confirmed using different concentration of BeSO4. Among the 23 patients tested, 22 showed negative results with EliSpot. Using CFSE flow cytometry, 1/7 tested patients showed a positive result with a beryllium specific CD4+ count around 30% versus 45% for SEB stimulation as positif control and 0.6 % for negative control. This patient was the one with a positive EliSpot assay. Conclusions: The preliminary data demonstrated the feasibility of Elispot and CFSE flow cytometry to detect BeS. The patient with a beryllium specific positive EliSpot and CFSE flow cytometry result had been exposed to beryllium at her workplace 20 years ago and is still regularly controlled for her pulmonary status. A positive BeLPT had already been described in 2001 in France for this patient. Further validation of these techniques are in progress.
Resumo:
Rapport de synthèse : Introduction : Les premières applications cliniques de la thérapie photodynamique (PDT) remontent à plus d'une vingtaine d'années. Basée sur l'activation d'un médicament photosensibilisateur par une source lumineuse à une longueur d'onde spécifique, la PDT permet la destruction sélective de tissus contenant le produit actif. Ce procédé a été expérimenté dans le traitement de cancers en raison de la propriété du médicament à se concentrer dans les tumeurs tout en épargnant les structures normales contigües. Cependant, les photosensibilisateurs utilisés jusqu'à ce jour n'ont pas démontré une accumulation exclusive dans les tissus néoplasiques mais également dans les structures saines avoisinantes induisant une destruction tissulaire non sélective. Notamment, d'importantes complications ont été rapportées suite à l'utilisation de la PDT dans la cavité thoracique après la résection de mésothéliomes pleuraux, et ce malgré l'arrivée de photosensibilisateurs de secondes générations. De ce fait, plusieurs études expérimentales ont été menées afin d'améliorer la sélectivité tumorale du médicament en modulant différentes conditions de traitement et en modifiant la structure du photosensibilisateur par pégylation. Le but de cette étude expérimentale est de corréler l'activité photodynamique, la phototoxicité et la distribution du m-tetrahydroxyphenylchlorin (mTHPC) et de sa forme pégylée, le PEG-mTHPC. De ce fait, un modèle de souris nues porteur de xenogreffes de mésothéliome humain a été utilisé pour étudier les deux photosensibilisateurs. De récents travaux avec ce modèle ont montré que la mesure de la concentration tissulaire du mTHPC et de sa forme pégylée par HPLC restait limitée afin de prédire l'activité photodynamique. De ce fait, nous pensons que les mesures de fluorescence peuvent être plus appropriée. Le signalement fluorescent est mesuré dans le tissu tumoral et dans une région contrôle de la peau afin d'étudier la distribution et l'intensité des deux sensibilisateurs. Méthode : Des souris nues (cd1nu/nu mice) de 8 semaines ont été transplantées avec des fragments de mésothéliome malin humain (H-meso-1). Ces derniers ont été obtenus à partir d'une suspension cellulaire. Au moins trois passages ont été faits dans les animaux, avant que le traitement soit initié. Deux groupes de 6 souris chacun ont été utilisés pour l'injection intraveineuse par la queue du mTHPC à 0.15 mg/kg et du PEG-mTHPC à dose équimolaire. Après trois jour, la tumeur ainsi qu'une région contrôle de la cuisse ont été illuminées sur une surface d'un diamètre de 1.2 cm et pendant 133 secondes avec un laser à une longueur d'onde à 652 nm (fluence 20 J/cm2, fluence rate 150 mW/cm2). Les animaux ont été ensuite sacrifiés 72 heures après l'illumination. L'étendue de la nécrose tumorale et de la région contrôle ont été déterminées en aveugle par histomorphometrie par un pathologue (HJA). La fluorescence microscopique a été évaluée dans 12 souris à une concentration de 0.15 et 0.5 mg/kg pour le mTHPC, et à doses équimolaires pour le PEG-mTHPC. Trois animaux ont été injectés avec le mTHPC à 0.15 mg/kg, 3 autres à dose équimolaire avec la forme pégylée et 6 souris avec le mTHPC à 0.5 mg/kg et à dose équimolaire. Les animaux ont été sacrifiés 72 heures après injection. L'intensité fluorescente des sensibilisateurs a été mesurée dans la tumeur et la région contrôle. Suite à cela, les coupes ont été fixées par H&E et superposées aux images fluorescentes, afin de localiser la distribution des deux photosensibilisateurs dans les différents compartiments tissulaires. Six souris transplantées n'ayant ni été injectées avec les sensibilisateurs ou illuminées ont servi de groupe contrôle. Résultats : Trois jours après l'illumination, la PDT provoque une nécrose tumorale de 10 ±5.4 mm2 pour le mTHPC à 0.15mg/kg et 5.2 ± 4.6 mm2 pour sa forme pégylée à dose équimolaire. Cependant, la nécrose tumorale induite par les deux formulations du sensibilisateur est significativement plus élevée que dans le groupe contrôle (0.33 ± 0.58 mm2) (P=0.02). Toutefois, le mTHPC pégylé provoque une photosensibilité cutanée moins importante que la forme non-pegylée. Dans les deux groupes, aucune nécrose n'a été observée dans la cuisse des animaux. Trois jours après l'injection du mTHPC et de la forme pégylée à 0.15 mg/kg, aucune activité fluorescente n'a été détectée. Cependant, à 0.5 mg/kg, la fluorescence microscopique révèle une distribution hétérogène des deux photo-sensibilisateurs dans le tissu tumoral avec une accumulation prédominante dans les régions peri-vasculaires. Les deux médicaments montrent une distribution intracellulaire homogène dans le cytoplasme et une absence de signalement dans le nucleus. La mesure de l'intensité fluorescente du mTHPC à 0.5mg/kg ne montre pas de différence significative entre le tissu tumoral et la région contrôle. Par contre, le PEG-mTHPC montre une intensité fluorescente supérieure dans le tissu tumoral que dans la peau (ratio tumeur- peau 0.94 pour le mTHPC et 1.73 pour le PEG-mTHPC). Conclusion : L'utilisation du mTHPC à 0.15mg/kg induit une nécrose tumorale similaire à celle du PEG-mTHPC à dose équimolaire. Cependant, ce dernier démontre une photo-toxicité plus atténuée de la peau. La fluorescence microscopique permet de localiser les deux sensibilisateurs dans les différents compartiments tissulaires à partir d'une dose de 0.5 mg/kg. Le PEG-mTHPC induit un signalement fluorescent supérieur dans le tissu tumoral par rapport à la peau. La mesure du signalement fluorescent a le potentiel de prédire l'activité photodynamique du mTHPC et de sa forme pégylée dans les xénogreffes de mésothéliome humain dans un modèle de souris nue.
Resumo:
Tumour immunologists strive to develop efficient tumour vaccination and adoptive transfer therapies that enlarge the pool of tumour-specific and -reactive effector T-cells in vivo. To assess the efficiency of the various strategies, ex vivo assays are needed for the longitudinal monitoring of the patient's specific immune responses providing both quantitative and qualitative data. In particular, since tumour cell cytolysis is the end goal of tumour immunotherapy, routine immune monitoring protocols need to include a read-out for the cytolytic efficiency of Ag-specific cells. We propose to combine current immune monitoring techniques in a highly sensitive and reproducible multi-parametric flow cytometry based cytotoxicity assay that has been optimised to require low numbers of Ag-specific T-cells. The possibility of re-analysing those T-cells that have undergone lytic activity is illustrated by the concomitant detection of CD107a upregulation on the surface of degranulated T-cells. To date, the LiveCount Assay provides the only possibility of assessing the ex vivo cytolytic activity of low-frequency Ag-specific cytotoxic T-lymphocytes from patient material.
Resumo:
Diffusion magnetic resonance studies of the brain are typically performed using volume coils. Although in human brain this leads to a near optimal filling factor, studies of rodent brain must contend with the fact that only a fraction of the head volume can be ascribed to the brain. The use of surface coil as transceiver increases Signal-to-Noise Ratio (SNR), reduces radiofrequency power requirements and opens the possibility of parallel transmit schemes, likely to allow efficient acquisition schemes, of critical importance for reducing the long scan times implicated in diffusion tensor imaging. This study demonstrates the implementation of a semiadiabatic echo planar imaging sequence (echo time=40 ms, four interleaves) at 14.1T using a quadrature surface coil as transceiver. It resulted in artifact free images with excellent SNR throughout the brain. Diffusion tensor derived parameters obtained within the rat brain were in excellent agreement with reported values.
Resumo:
By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.
Resumo:
Denervated muscle tissue undergoes morphologic changes that result in atrophy. The amount of muscle atrophy after denervation following free muscle transfer has not been measured so far. Therefore, the amount of muscle atrophy in human free muscle transfer for lower extremity reconstruction was measured in a series of 10 patients. Three-dimensional laser surface scanning was used to measure flap volume changes 2 weeks as well as 6 and 12 months after the operation. None of the muscles transferred was re-innervated.All muscles healed uneventfully without signs of compromised perfusion resulting in partial flap loss. The muscle volume decreased to 30 ± 4% and 19 ± 4% 6 and 12 months, respectively, after the operation, ie, the volume decreased by approximately 80% within a 12-month period.Denervated free muscle flap tissue undergoes massive atrophy of approximately 80%, mostly within the first 6 months.
Resumo:
OBJECTIVE: Standard cardiopulmonary bypass (CPB) circuits with their large surface area and volume contribute to postoperative systemic inflammatory reaction and hemodilution. In order to minimize these problems a new approach has been developed resulting in a single disposable, compact arterio-venous loop, which has integral kinetic-assist pumping, oxygenating, air removal, and gross filtration capabilities (CardioVention Inc., Santa Clara, CA, USA). The impact of this system on gas exchange capacity, blood elements and hemolysis is compared to that of a conventional circuit in a model of prolonged perfusion. METHODS: Twelve calves (mean body weight: 72.2+/-3.7 kg) were placed on cardiopulmonary bypass for 6 h with a flow of 5 l/min, and randomly assigned to the CardioVention system (n=6) or a standard CPB circuit (n=6). A standard battery of blood samples was taken before bypass and throughout bypass. Analysis of variance was used for comparison. RESULTS: The hematocrit remained stable throughout the experiment in the CardioVention group, whereas it dropped in the standard group in the early phase of perfusion. When normalized for prebypass values, both profiles differed significantly (P<0.01). Both O2 and CO2 transfers were significantly improved in the CardioVention group (P=0.04 and P<0.001, respectively). There was a slightly higher pressure drop in the CardioVention group but no single value exceeded 112 mmHg. No hemolysis could be detected in either group with all free plasma Hb values below 15 mg/l. Thrombocyte count, when corrected by hematocrit and normalized by prebypass values, exhibited an increased drop in the standard group (P=0.03). CONCLUSION: The CardioVention system with its concept of limited priming volume and exposed foreign surface area, improves gas exchange probably because of the absence of detectable hemodilution, and appears to limit the decrease in the thrombocyte count which may be ascribed to the reduced surface. Despite the volume and surface constraints, no hemolysis could be detected throughout the 6 h full-flow perfusion period.
Resumo:
Purpose: Obesity is an established independent risk factor for chronic kidney disease. Thus, measurement of glomerular filtration rate (GFR) is important in this population. Traditionally, GFR has been indexed for body surface area (BSA), but this indexation may not be appropriate in obese individuals. Therefore, the objective of the study was to compare absolute GFR with GFR indexed for BSA and with GFR indexed for height. Methods and materials: The study was conducted in 66 families from the Seychelles islands that included several members with hypertension. GFR and effective renal plasma flow (ERPF) were measured using inulin and PAH clearances, respectively. Antihypertensive treatment, if used, was withheld 2 weeks before conducting the clearances. Participants with diabetes mellitus were excluded from the analysis. BSA was calculated using the Dubois formula. We assessed trend across BMI categories using a non parametric test. Results: Participants included 174 women and 127 men. The prevalence of hypertension was 61%, of which 68% were treated. The table shows that absolute GFR, GFR indexed for height, ERPF, filtration fraction were significantly higher across BMI categories. When GFR was indexed for BSA, the association between GFR and BMI categories was lost. Conclusion: Indexing GFR for BSA in overweight and obese individuals leads to a substantial underestimation of GFR. Filtration fraction, which does not depend on BSA, is higher in obese individuals, which suggests glomerular hyperfiltration. Indexing GFR for BSA therefore would mask the underlying glomerular hyperfiltration. As the number of nephrons does not increase with weight gain, absolute GFR represents a better marker of single nephron GFR and is more appropriate.
Resumo:
Rough a global coarse problem. Although these techniques are usually employed for problems in which the fine-scale processes are described by Darcy's law, they can also be applied to pore-scale simulations and used as a mathematical framework for hybrid methods that couples a Darcy and pore scales. In this work, we consider a pore-scale description of fine-scale processes. The Navier-Stokes equations are numerically solved in the pore geometry to compute the velocity field and obtain generalized permeabilities. In the case of two-phase flow, the dynamics of the phase interface is described by the volume of fluid method with the continuum surface force model. The MsFV method is employed to construct an algorithm that couples a Darcy macro-scale description with a pore-scale description at the fine scale. The hybrid simulations results presented are in good agreement with the fine-scale reference solutions. As the reconstruction of the fine-scale details can be done adaptively, the presented method offers a flexible framework for hybrid modeling.
Resumo:
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.
Resumo:
PURPOSE: Visualization of coronary blood flow in the right and left coronary system in volunteers and patients by means of a modified inversion-prepared bright-blood coronary magnetic resonance angiography (cMRA) sequence. MATERIALS AND METHODS: cMRA was performed in 14 healthy volunteers and 19 patients on a 1.5 Tesla MR system using a free-breathing 3D balanced turbo field echo (b-TFE) sequence with radial k-space sampling. For magnetization preparation a slab selective and a 2D selective inversion pulse were used for the right and left coronary system, respectively. cMRA images were evaluated in terms of clinically relevant stenoses (< 50 %) and compared to conventional catheter angiography. Signal was measured in the coronary arteries (coro), the aorta (ao) and in the epicardial fat (fat) to determine SNR and CNR. In addition, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: The use of a selective inversion pre-pulse allowed direct visualization of the coronary blood flow in the right and left coronary system. The measured SNR and CNR, vessel length, and vessel sharpness in volunteers (SNR coro: 28.3 +/- 5.0; SNR ao: 37.6 +/- 8.4; CNR coro-fat: 25.3 +/- 4.5; LAD: 128.0 cm +/- 8.8; RCA: 74.6 cm +/- 12.4; Sharpness: 66.6 % +/- 4.8) were slightly increased compared to those in patients (SNR coro: 24.1 +/- 3.8; SNR ao: 33.8 +/- 11.4; CNR coro-fat: 19.9 +/- 3.3; LAD: 112.5 cm +/- 13.8; RCA: 69.6 cm +/- 16.6; Sharpness: 58.9 % +/- 7.9; n.s.). In the patient study the assessment of 42 coronary segments lead to correct identification of 10 clinically relevant stenoses. CONCLUSION: The modification of a previously published inversion-prepared cMRA sequence allowed direct visualization of the coronary blood flow in the right as well as in the left coronary system. In addition, this sequence proved to be highly sensitive regarding the assessment of clinically relevant stenotic lesions.
Resumo:
The use of herbicides in agriculture may lead to environmental problems, such as surface water pollution, with a potential risk for aquatic organisms. The herbicide glyphosate is the most used active ingredient in the world and in Switzerland. In the Lavaux vineyards it is nearly the only molecule applied. This work aimed at studying its fate in soils and its transfer to surface waters, using a multi-scale approach: from molecular (10-9 m) and microscopic scales (10-6 m), to macroscopic (m) and landscape ones (103 m). First of all, an analytical method was developed for the trace level quantification of this widely used herbicide and its main by-product, aminomethylphosphonic acid (AMPA). Due to their polar nature, their derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was done prior to their concentration and purification by solid phase extraction. They were then analyzed by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The method was tested in different aqueous matrices with spiking tests and validated for the matrix effect correction in relevant environmental samples. Calibration curves established between 10 and 1000ng/l showed r2 values above 0.989, mean recoveries varied between 86 and 133% and limits of detection and quantification of the method were as low as 5 and 10ng/l respectively. At the parcel scale, two parcels of the Lavaux vineyard area, located near the Lutrive River at 6km to the east of Lausanne, were monitored to assess to which extent glyphosate and AMPA were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. Results revealed that the mobility of glyphosate and AMPA in the unsaturated zone was likely driven by the precipitation regime and the soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Elevated glyphosate and AMPA concentrations were measured at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flow in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which for the lateral transport of the herbicide molecules was determined by the slope steepness. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. A mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters. Observations made in the Lutrive River revealed interesting details of glyphosate and AMPA dynamics in urbanized landscapes, such as the Lavaux vineyards. Indeed, besides their physical and chemical properties, herbicide dynamics at the catchment level strongly depend on application rates, precipitation regime, land use and also on the presence of drains or constructed channels. Elevated concentrations, up to 4970 ng/l, observed just after the application, confirmed the diffuse export of these compounds from the vineyard area by surface runoff during main rain events. From April to September 2011, a total load of 7.1 kg was calculated, with 85% coming from vineyards and minor urban sources and 15% from arable crops. Small vineyard surfaces could generate high concentrations of herbicides and contribute considerably to the total load calculated at the outlet, due to their steep slopes (~10%). The extrapolated total amount transferred yearly from the Lavaux vineyards to the Lake of Geneva was of 190kg. At the molecular scale, the possible involvement of dissolved organic matter (DOM) in glyphosate and copper transport was studied using UV/Vis fluorescence spectroscopy. Combined with parallel factor (PARAFAC) analysis, this technique allowed characterizing DOM of soil and surface water samples from the studied vineyard area. Glyphosate concentrations were linked to the fulvic-like spectroscopic signature of DOM in soil water samples, as well as to copper, suggesting the formation of ternary complexes. In surface water samples, its concentrations were also correlated to copper ones, but not in a significant way to the fulvic-like signature. Quenching experiments with standards confirmed field tendencies in the laboratory, with a stronger decrease in fluorescence intensity for fulvic-like fluorophore than for more aromatic ones. Lastly, based on maximum concentrations measured in the river, an environmental risk for these compounds was assessed, using laboratory tests and ecotoxicity data from the literature. In our case and with the methodology applied, the risk towards aquatic species was found negligible (RF<1).
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".
Resumo:
Surface functionalization of hydroxyapatite (HA) and beta-tricalcium phosphate (TCP) bioceramics with chemical ligands containing a pyrrogallol moiety was developed to improve the adhesion of bone cell precursors to the biomaterials. Fast and biocompatible copper-free click reaction with azido-modified human fetal osteoblasts resulted in improved cell binding to both HA and TCP bioceramics, opening the way for using this methodology in the preparation of cell-engineered bone implants.