931 resultados para fish production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strontium and neodymium isotopic data are reported for barite samples chemically separated from Late Miocene to Pliocene sediments from the eastern equatorial Pacific. At a site within a region of very high productivity close to the equator, 87Sr/86Sr ratios in the barite separates are indistinguishable from those of foraminifera and fish teeth from the same samples. However, at two sites north of the productivity maximum barite separates have slightly, but consistently lower (averaging 0.000062) ratios than the coexisting phases, although values still fall within the total range of published values for the contemporaneous seawater strontium isotope curve. We examine possible causes for this offset including recrystallization of the foraminifera, fish teeth or barite, the presence of non-barite contaminants, or incorporation of older, reworked deep-sea barite; the inclusion of a small amount of hydrothermal barite in the sediments seems most consistent with our data, although there are difficulties associated with adequate production and transportation of this phase. Barite is unlikely to replace calcite as a preferred tracer of seawater strontium isotopes in carbonate-rich sediments, but may prove a useful substitute in cases where calcite is rare or strongly affected by diagenesis. In contrast to the case for strontium, neodymium isotopic ratios in the barite separates are far from expected values for contemporary seawater, and appear to be dominated by an (unobserved) eolian component with high neodymium concentration and low 143Nd/144Nd. These results suggest that the true potential of barite as an indicator of paleocean neodymium isotopic ratios and REE patterns will be realized only when a more selective separation procedure is developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in circulation associated with the shoaling of the Isthmus of Panama and the Caribbean carbonate crash in the Miocene were investigated using Nd isotopes from fossil fish teeth and debris from two sites in the Caribbean Basin (Ocean Drilling Program Sites 998 and 999) and two sites in the eastern equatorial Pacific (Sites 846 and 1241). The total range for e-Nd values measured from 18 to 4.5 Ma in the Caribbean is -7.3 to 0. These values are higher than Atlantic water masses (~-11) and range up to values equivalent to contemporaneous Pacific water masses, confirming that flow into the Caribbean Basin was composed of a mixture of Pacific and Atlantic waters, with an upper limit of almost pure Pacific-sourced waters. Throughout the Caribbean record, particularly during the carbonate crash (10-12 Ma), low carbonate mass accumulation rates (MARs) correlate with more radiogenic e-Nd values, indicating increased flow of corrosive Pacific intermediate water into the Caribbean Basin during intervals of dissolution. This flow pattern agrees with results from general ocean circulation models designed to study the effect of the shoaling of the Central American Seaway. Low carbonate MARs and high e-Nd values also correlate with intervals of increased Northern Component Water production and, therefore, enhanced conveyor circulation, suggesting that the conveyor may respond to changes in circulation associated with shoaling of the Central American Seaway. Reduced Pacific throughflow related to shoaling of the seaway led to a gradual increase in carbonate preservation and more Atlantic-like e-Nd values following the carbonate crash.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Keel fractures in the laying hen are the most critical animal welfare issue facing the egg production industry, particularly with the increased use of extensive systems in response to the 2012 EU directive banning conventional battery cages. The current study is aimed at assessing the effects of 2 omega-3 (n3) enhanced diets on bone health, production endpoints, and behavior in free-range laying hens. Data was collected from 2 experiments over 2 laying cycles, each of which compared a (n3) supplemented diet with a control diet. Experiment 1 employed a diet supplemented with a 60:40 fish oil-linseed mixture (n3:n6 to 1.35) compared with a control diet (n3:n6 to 0.11), whereas the n3 diet in Experiment 2 was supplemented with a 40:60 fish oil-linseed (n3:n6 to 0.77) compared to the control diet (n3:n6 to 0.11). The n3 enhanced diet of Experiment 1 had a higher n3:n6 ratio, and a greater proportion of n3 in the long chain (C20/22) form (0.41 LC:SC) than that of Experiment 2 (0.12 LC:SC). Although dietary treatment was successful in reducing the frequency of fractures by approximately 27% in Experiment 2, data from Experiment 1 indicated the diet actually induced a greater likelihood of fracture (odds ratio: 1.2) and had substantial production detriment. Reduced keel breakage during Experiment 2 could be related to changes in bone health as n3-supplemented birds demonstrated greater load at failure of the keel, and tibiae and humeri that were more flexible. These results support previous findings that n3-supplemented diets can reduce fracture likely by increasing bone strength, and that this can be achieved without detriment to production. However, our findings suggest diets with excessive quantities of n3, or very high levels of C20/22, may experience health and production detriments. Further research is needed to optimize the quantity and type of n3 in terms of bone health and production variables and investigate the potential associated mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los peces son animales, donde en la mayoría de los casos, son considerados como nadadores muy eficientes y con una alta capacidad de maniobra. En general los peces se caracterizan por su capacidad de maniobra, locomoción silencioso, giros y partidas rápidas y viajes de larga distancia. Los estudios han identificado varios tipos de locomoción que los peces usan para generar maniobras y natación constante. A bajas velocidades la mayoría de los peces utilizan sus aletas pares y / o impares para su locomoción, que ofrecen una mayor maniobrabilidad y mejor eficiencia de propulsión. A altas velocidades la locomoción implica el cuerpo y / o aleta caudal porque esto puede lograr un mayor empuje y aceleración. Estas características pueden inspirar el diseo y fabricación de una piel muy flexible, una aleta caudal mórfica y una espina dorsal no articulada con una gran capacidad de maniobra. Esta tesis presenta el desarrollo de un novedoso pez robot bio-inspirado y biomimético llamado BR3, inspirado en la capacidad de maniobra y nado constante de los peces vertebrados. Inspirado por la morfología de los peces Micropterus salmoides o también conocido como lubina negra, el robot BR3 utiliza su fundamento biológico para desarrollar modelos y métodos matemáticos precisos que permiten imitar la locomoción de los peces reales. Los peces Largemouth Bass pueden lograr un nivel increíble de maniobrabilidad y eficacia de la propulsión mediante la combinación de los movimientos ondulatorios y aletas morficas. Para imitar la locomoción de los peces reales en una contraparte artificial se necesita del análisis de tecnologías de actuación alternativos, como arreglos de fibras musculares en lugar de servo actuadores o motores DC estándar, así como un material flexible que proporciona una estructura continua sin juntas. Las aleaciones con memoria de forma (SMAs) proveen la posibilidad de construir robots livianos, que no emiten ruido, sin motores, sin juntas y sin engranajes. Asi es como un pez robot submarino se ha desarrollado y cuyos movimientos son generados mediante SMAs. Estos actuadores son los adecuados para doblar la espina dorsal continua del pez robot, que a su vez provoca un cambio en la curvatura del cuerpo. Este tipo de arreglo estructural está inspirado en los músculos rojos del pescado, que son usados principalmente durante la natación constante para la flexión de una estructura flexible pero casi incompresible como lo es la espina dorsal de pescado. Del mismo modo la aleta caudal se basa en SMAs y se modifica para llevar a cabo el trabajo necesario. La estructura flexible proporciona empuje y permite que el BR3 nade. Por otro lado la aleta caudal mórfica proporciona movimientos de balanceo y guiada. Motivado por la versatilidad del BR3 para imitar todos los modos de natación (anguilliforme, carangiforme, subcarangiforme y tunniforme) se propone un controlador de doblado y velocidad. La ley de control de doblado y velocidad incorpora la información del ángulo de curvatura y de la frecuencia para producir el modo de natación deseado y a su vez controlar la velocidad de natación. Así mismo de acuerdo con el hecho biológico de la influencia de la forma de la aleta caudal en la maniobrabilidad durante la natación constante se propone un control de actitud. Esta novedoso robot pescado es el primero de su tipo en incorporar sólo SMAs para doblar una estructura flexible continua y sin juntas y engranajes para producir empuje e imitar todos los modos de natación, así como la aleta caudal que es capaz de cambiar su forma. Este novedoso diseo mecatrónico presenta un futuro muy prometedor para el diseo de vehículos submarinos capaces de modificar su forma y nadar mas eficientemente. La nueva metodología de control propuesto en esta tesis proporcionan una forma totalmente nueva de control de robots basados en SMAs, haciéndolos energéticamente más eficientes y la incorporación de una aleta caudal mórfica permite realizar maniobras más eficientemente. En su conjunto, el proyecto BR3 consta de cinco grandes etapas de desarrollo: • Estudio y análisis biológico del nado de los peces con el propósito de definir criterios de diseño y control. • Formulación de modelos matemáticos que describan la: i) cinemática del cuerpo, ii) dinámica, iii) hidrodinámica iv) análisis de los modos de vibración y v) actuación usando SMA. Estos modelos permiten estimar la influencia de modular la aleta caudal y el doblado del cuerpo en la producción de fuerzas de empuje y fuerzas de rotación necesarias en las maniobras y optimización del consumo de energía. • Diseño y fabricación de BR3: i) estructura esquelética de la columna vertebral y el cuerpo, ii) mecanismo de actuación basado en SMAs para el cuerpo y la aleta caudal, iii) piel artificial, iv) electrónica embebida y v) fusión sensorial. Está dirigido a desarrollar la plataforma de pez robot BR3 que permite probar los métodos propuestos. • Controlador de nado: compuesto por: i) control de las SMA (modulación de la forma de la aleta caudal y regulación de la actitud) y ii) control de nado continuo (modulación de la velocidad y doblado). Está dirigido a la formulación de los métodos de control adecuados que permiten la modulación adecuada de la aleta caudal y el cuerpo del BR3. • Experimentos: está dirigido a la cuantificación de los efectos de: i) la correcta modulación de la aleta caudal en la producción de rotación y su efecto hidrodinámico durante la maniobra, ii) doblado del cuerpo para la producción de empuje y iii) efecto de la flexibilidad de la piel en la habilidad para doblarse del BR3. También tiene como objetivo demostrar y validar la hipótesis de mejora en la eficiencia de la natación y las maniobras gracias a los nuevos métodos de control presentados en esta tesis. A lo largo del desarrollo de cada una de las cinco etapas, se irán presentando los retos, problemáticas y soluciones a abordar. Los experimentos en canales de agua estarán orientados a discutir y demostrar cómo la aleta caudal y el cuerpo pueden afectar considerablemente la dinámica / hidrodinámica de natación / maniobras y cómo tomar ventaja de la modulación de curvatura que la aleta caudal mórfica y el cuerpo permiten para cambiar correctamente la geometría de la aleta caudal y del cuerpo durante la natación constante y maniobras. ABSTRACT Fishes are animals where in most cases are considered as highly manoeuvrable and effortless swimmers. In general fishes are characterized for his manoeuvring skills, noiseless locomotion, rapid turning, fast starting and long distance cruising. Studies have identified several types of locomotion that fish use to generate maneuvering and steady swimming. At low speeds most fishes uses median and/or paired fins for its locomotion, offering greater maneuverability and better propulsive efficiency At high speeds the locomotion involves the body and/or caudal fin because this can achieve greater thrust and accelerations. This can inspire the design and fabrication of a highly deformable soft artificial skins, morphing caudal fins and non articulated backbone with a significant maneuverability capacity. This thesis presents the development of a novel bio-inspired and biomimetic fishlike robot (BR3) inspired by the maneuverability and steady swimming ability of ray-finned fishes (Actinopterygii, bony fishes). Inspired by the morphology of the Largemouth Bass fish, the BR3 uses its biological foundation to develop accurate mathematical models and methods allowing to mimic fish locomotion. The Largemouth Bass fishes can achieve an amazing level of maneuverability and propulsive efficiency by combining undulatory movements and morphing fins. To mimic the locomotion of the real fishes on an artificial counterpart needs the analysis of alternative actuation technologies more likely muscle fiber arrays instead of standard servomotor actuators as well as a bendable material that provides a continuous structure without joins. The Shape Memory Alloys (SMAs) provide the possibility of building lightweight, joint-less, noise-less, motor-less and gear-less robots. Thus a swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. Likewise the caudal fin is based on SMAs and is customized to provide the necessary work out. The bendable structure provides thrust and allows the BR3 to swim. On the other hand the morphing caudal fin provides roll and yaw movements. Motivated by the versatility of the BR3 to mimic all the swimming modes (anguilliform, caranguiform, subcaranguiform and thunniform) a bending-speed controller is proposed. The bending-speed control law incorporates bend angle and frequency information to produce desired swimming mode and swimming speed. Likewise according to the biological fact about the influence of caudal fin shape in the maneuverability during steady swimming an attitude control is proposed. This novel fish robot is the first of its kind to incorporate only SMAs to bend a flexible continuous structure without joints and gears to produce thrust and mimic all the swimming modes as well as the caudal fin to be morphing. This novel mechatronic design is a promising way to design more efficient swimming/morphing underwater vehicles. The novel control methodology proposed in this thesis provide a totally new way of controlling robots based on SMAs, making them more energy efficient and the incorporation of a morphing caudal fin allows to perform more efficient maneuvers. As a whole, the BR3 project consists of five major stages of development: • Study and analysis of biological fish swimming data reported in specialized literature aimed at defining design and control criteria. • Formulation of mathematical models for: i) body kinematics, ii) dynamics, iii) hydrodynamics, iv) free vibration analysis and v) SMA muscle-like actuation. It is aimed at modelling the e ects of modulating caudal fin and body bend into the production of thrust forces for swimming, rotational forces for maneuvering and energy consumption optimisation. • Bio-inspired design and fabrication of: i) skeletal structure of backbone and body, ii) SMA muscle-like mechanisms for the body and caudal fin, iii) the artificial skin, iv) electronics onboard and v) sensor fusion. It is aimed at developing the fish-like platform (BR3) that allows for testing the methods proposed. • The swimming controller: i) control of SMA-muscles (morphing-caudal fin modulation and attitude regulation) and ii) steady swimming control (bend modulation and speed modulation). It is aimed at formulating the proper control methods that allow for the proper modulation of BR3’s caudal fin and body. • Experiments: it is aimed at quantifying the effects of: i) properly caudal fin modulation into hydrodynamics and rotation production for maneuvering, ii) body bending into thrust generation and iii) skin flexibility into BR3 bending ability. It is also aimed at demonstrating and validating the hypothesis of improving swimming and maneuvering efficiency thanks to the novel control methods presented in this thesis. This thesis introduces the challenges and methods to address these stages. Waterchannel experiments will be oriented to discuss and demonstrate how the caudal fin and body can considerably affect the dynamics/hydrodynamics of swimming/maneuvering and how to take advantage of bend modulation that the morphing-caudal fin and body enable to properly change caudal fin and body’ geometry during steady swimming and maneuvering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep sea sediment cores from the North and South Pacific gyres over the past 85 million years. We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma), was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Paleogene Ocean (66-20 Ma), initiated by the Cretaceous/Paleogene Mass Extinction, had nearly 4 times the abundance of fish teeth compared to elasmobranch denticles. This Paleogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages about 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorado Cooperative Wildlife Research Unit, Colorado A. & M College, Fort Collins, Colorado [and] Colorado Game and Fish Department, Denver, Colorado, cooperating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paradigm that mangroves are critical for sustaining production in coastal fisheries is widely accepted, but empirical evidence has been tenuous. This study showed that links between mangrove extent and coastal fisheries production could be detected for some species at a broad regional scale (1000s of kilometres) on the east coast of Queensland, Australia. The relationships between catch-per-unit-effort for different commercially caught species in four fisheries (trawl, line, net and pot fisheries) and mangrove characteristics, estimated from Landsat images were examined using multiple regression analyses. The species were categorised into three groups based on information on their life history characteristics, namely mangrove-related species (banana prawns Penaeus merguiensis, mud crabs Scylla serrata and barramundi Lates calcarifer), estuarine species (tiger prawns Penaeus esculentus and Penaeus semisulcatus, blue swimmer crabs Portunus pelagicus and blue threadfin Eleutheronema tetradactylum) and offshore species (coral trout Plectropomus spp.). For the mangrove-related species, mangrove characteristics such as area and perimeter accounted for most of the variation in the model; for the non-mangrove estuarine species, latitude was the dominant parameter but some mangrove characteristics (e.g. mangrove perimeter) also made significant contributions to the models. In contrast, for the offshore species, latitude was the dominant variable, with no contribution from mangrove characteristics. This study also identified that finer scale spatial data for the fisheries, to enable catch information to be attributed to a particular catchment, would help to improve our understanding of relationships between mangroves and fisheries production. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shrimp aquaculture industry is a relatively new livestock industry, having developed over the past 30 years. Thus, it is poised to take advantage of new technologies from the outset of selective breeding programs. This contrasts with long established livestock industries, where there are already highly specialised breeds. This review focuses specifically on the potential application of microarrays to shrimp breeding. Potential applications of microarrays in selective breeding programs are summarised. Microarrays can be used as a rapid means to generate molecular markers for genetic linkage mapping, and genetic maps have been constructed for yeast, Arabidopsis and barley using microarray technology. Microarrays can also be used in the hunt for candidate genes affecting particular traits, leading to development of perfect markers for these traits (i.e. causative mutations). However, this requires that microarray analysis be combined with genetic linkage mapping, and that substantial genomic information is available for the species in question. A novel application of microarrays is to treat gene expression as a quantitative trait in itself and to combine this with linkage mapping to identify quantitative trait loci controlling the levels of gene expression; this approach may identify higher level regulatory genes in specific pathways. Finally, patterns of gene expression observed using microarrays may themselves be treated as phenotypic traits in selection programs (e.g. a particular pattern of gene expression might be indicative of a disease tolerant individual). Microarrays are now being developed for a number of shrimp species in laboratories around the world, primarily with a focus on identifying genes involved in the immune response. However, at present, there is no central repository of shrimp genomic information, which limits the rate at which shrimp genomic research can be progressed. The application of microarrays to shrimp breeding will be extremely limited until there is a shared repository of genomic information for shrimp, and the collective will and resources to develop comprehensive genomic tools for shrimp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weight loss in advanced cancer patients is refractory to conventional nutritional support. This may be due to metabolic changes mediated by proinflammatory cytokines, hormones, and tumor-derived products. We previously showed that a nutritional supplement enriched with fish oil will reverse weight loss in patients with pancreatic cancer cachexia. The present study examines the effect of this supplement on a number of mediators thought to play a role in cancer cachexia. Twenty weight-losing patients with pancreatic cancer were asked to consume a nutritional supplement providing 600 kcal and 2 g of eicosapentaenoic acid per day. At baseline and after 3 wk, patients were weighed and samples were collected to measure serum concentrations of interleukin (IL)-6 and its soluble receptor tumor necrosis factor receptors I and II, cortisol, insulin, and leptin, peripheral blood mononuclear cell production of IL-1 beta, IL-6, and tumor necrosis factor, and urinary excretion of proteolysis inducing factor. After 3 wk of consumption of the fish oil-enriched nutritional supplement, there was a significant fall in production of IL-6 (from median 16.5 to 13.7 ng/ml, P = 0.015), a rise in serum insulin concentration (from 3.3 to 5.0 mU/l, P = 0.0064), a fall in the cortisol-to-insulin ratio (P = 0.0084), and a fall in the proportion of patients excreting proteolysis inducing factor (from 88% to 40%, P = 0.008). These changes occurred in association with weight gain (median 1 kg, P = 0.024). Various mediators of catabolism in cachexia are modulated by administration of a fish oil-enriched nutritional supplement in pancreatic cancer patients. This may account for the reversal of weight loss in patients consuming this supplement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis provides the first detailed study of maximal oxygen consumption of turbot on a fish farm over a range of fish sizes and temperatures. Also provided is a study of the diets used in turbot farming and the development of a diet that contains no fresh fish. A detailed study of previous research on flatfish nutrition, identified fresh fish, sprat in particular, as the optimum diet for turbot farming. A series of experiments was undertaken that confirmed this and also identified one possible explanation for the optimum performance of sprat, as a function of high non-protein energy ratios in sprat. This factor was exploited in the production of a diet containing no fresh fish and which produced superior results to diets containing fresh fish; the optimum level of lipid in the diet was determined as 18%. The study of oxygen consumption was on fully-fed fish so that maximum demand could be quantified. Continuous monitoring of tank water oxygen levels enabled the calculation of the Specific Dynamic Action (SDA) effect in turbot and the relation of it to dietary energy. Variation of SDA with the dietary energy profile was identified as a contributing factor to differential fish growth on various diets. Finally, the implications of this work to fish farming were considered. Economic appraisal and comparison of the diets routinely used in turbot farming identified that the diet developed as a result of this work, ie the diet containing no fresh fish protein, was more cost effective on the basis of the production of one tonne of turbot. The study of oxygen consumption enables water supply to be calculated for any fish size between 1g and 1000g between the temperatures of 7® C and 16® C. The quantification of SDA enables correct adjustment of oxygen flows according to the feeding status of the fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Everglades, the majority of fish detrital inputs occur during the dry scason, when waterlevel drawdown reduces aquatic habitat. While these mortality events are highly seasonal, the remineralization and recycling of fish detrital nutrients may represent an important stimulus to the ecosystem in the following wet season. The goal of this study was to quantify the rate of detrital fish decomposition during three periods of the year to determine seasonal variations in decomposition patterns in this ecosystem. A multiple regression analysis showed that hydroperiod and water depth both played a role in determining fish decomposition rates within this ecosystem. Decomposition rates ranged from a low of 13% day−1 in December 2000 to a high of 50% day−1 in April 2001, the height of the dry season. Phosphorus analysis showed that Gambusia holbrooki, the dominant small fish species in the Everglades, contains 7.169±1.46 mg P g−1 wet fish weight. Based on the observed decomposition rates and the average biomass added, the estimafed daily flux of phosphorus from the experimental detrital loading ranged from a low of 27.04 mg P day−1 to a high of 108.14 mg P day−1 during the decomposition period. We estimated that these inputs could represent an input of 43 μg P m−2 day−1 to the total temporal Everglades phosphorus budget. Although much of this phosphorus is likely incorporated into the macroinvertebrate pool, detrital inputs peak during the dry season when nutrients are most likely to be incorporated into the soil and occur when decomposition of vegetative material is moisture-limited. These inputs may therefore play an important role in stimulating vegetative production during the early wet season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the tropical and subtropical wet and dry regions, maintaining natural hydrologic connections between coastal rivers and adjacent ephemeral wetlands is critical to conserving and sustaining high levels of fisheries production within these systems. Though there is a consensus that there is a need to maintain these natural connections, little is known about what attributes of floodplain inundation regimes are most important in sustaining fisheries production. Two attributes of the flood season and thus floodplain inundation that may be particularly influential to fisheries are the amplitude of the flood season (floodplain water depth and spatial extent of inundation) and the duration of the flood season (i.e., time floodplains are inundated). In mangrove-dominated Everglades coastal rivers, seasonal inundation of upstream marsh floodplains may play an important role in provisioning recreational fisheries; however, this relationship remains unknown. Using two Everglades coastal river fisheries as a model, we tested whether the amplitude of the flood season or the duration of the flood season is more important in explaining variation in angler catch records of common snook and largemouth bass collected from 1992 to 2012. We validated angler catches with fisheries-independent electrofishing conducted in the same region from 2004 to 2012. Our results showed (1) that bass angler catches tracked electrofishing catches, while snook catches were completely mismatched. And (2) that previous year's marsh dynamics, particularly the duration of the flood season, was more influential than the flood season amplitude in explaining variation in bass catches, such that bass angler catches were negatively correlated to the period time that floodplains remained disconnected from coastal rivers in the previous year, while snook catches were not very well explained by floodplain inundation terms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-hydroperiod Everglades wetlands have been disproportionately affected by reductions in freshwater inflows, land conversion and biotic invasions. Severe hydroperiod reductions in these habitats, including the Rocky Glades, coupled with proximity to canals that act as sources of invasions, may limit their ability to support high levels of aquatic production. We examined whether karst solution holes function as dry-down refuges for fishes, providing a source of marsh colonists upon reflooding, by tracking fish abundance, nonnative composition, and survival in solution holes throughout the dry season. We paired field surveys with an in situ nonnative predation experiment that tested the effects of predation by the recent invader, African jewelfish (Hemichromis letourneuxi) on native fishes. Over the 3 years surveyed, a large number of the solution holes dried before the onset of the wet season, while those retaining water had low survivorship and were dominated by nonnatives. In the experiment, mortality of eastern mosquitofish (Gambusia holbrooki) in the presence of African jewelfish was greater than that associated with deteriorating water quality. Under current water management, findings suggest that solution holes are largely sinks for native fishes, given the high frequency of drydown, extensive period of fish residence, and predation by nonnative fishes.