861 resultados para fish parasite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first TEM examination of vitellogenesis in the cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax and a member of a little-studied trypanorhynch family, the Aporhynchidae. The synthetic activity of vitellocytes plays two important functions in the developmental biology of cestodes: (1) their shell-globules serve in eggshell formation; and (2) their accumulated reserves of glycogen and lipids represent a food source for the developing embryo. In A. menezesi, vitelline follicles consist of cells at various stages of development, from peripheral, immature cells of the gonial type to mature cells towards the centre of the follicle. These stages are: (I) immature; (II) early differentiation; (III) advanced maturation; and (IV) mature. Gradual changes involved in this process occur within each stage. Vitellogenesis involves: (1) an increase in cell volume; (2) the development of a smooth endoplasmic reticulum and an accelerated formation and accumulation of both unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (3) the formation of individual β-glycogen particles and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; (4) the rapid accumulation of large, moderately saturated lipid droplets accompanied by dense accumulations of β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of maturation; (5) the development of cisternae of granular endoplasmic reticulum that produce dense, proteinaceous shell-globules; (6) the development of Golgi complexes engaged in the packaging of this material; and (7) the progressive and continuous enlargement of shell-globules into very large clusters in the peripheral layer during the advanced stage of maturation. Vitellogenesis in A. menezesi, only to some extent, resembles that previously described for four other trypanorhynchs. It differs in: (i) the reversed order of secretory activities in the differentiating vitellocytes, namely the accumulation of large lipid droplets accompanied by glycogenesis or β-glycogen formation during early differentiation (stage II), i.e. before the secretory activity, which is predominantly protein synthesis for shell-globule formation (stage III); (ii) the very heavy accumulation of large lipid droplets during the final stage of cytodifferentiation (stage IV); and (iii) the small number of β-glycogen particles present in mature vitellocytes. Ultracytochemical staining with PA-TCH-SP for glycogen proved positive for a small number of β-glycogen particles in differentiating and mature vitellocytes. Hypotheses, concerning the interrelationships of patterns of vitellogenesis, possible modes of egg formation, embryonic development and life-cycles, are commented upon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical habitat characteristics such as stream width, depth, instream cover, and substrate composition are important environmental factors that shape Iowa’s stream fish species assemblages. The Iowa Department of Natural Resources (IDNR) stream biological assessment program collects physical habitat data to help interpret fish assemblage sampling results in order to assess stream health condition and the attainment status of designated aquatic life uses. The quantitative habitat indicators and interpretative guidelines developed in this study are designed for specific applications within the stream bioassessment program. These tools might also be useful to natural resource managers for purposes such as stream habitat improvement prioritization, goal-setting, and performance assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The information presented in this summary document has been based on the comprehensive,"Task Force Report on Water-Oriented Outdoor Recreation, Fish and Wildlife." The overriding principle the main task force report conveyed is that Iowa should not forsake the remaining water-oriented fish and wildlife resource base in the name of economic development.The reader should refer to the task force document for more detailed information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Paratethys evolved as a marginal sea during the Alpine-Himalayan orogeny in the Oligo-Miocene. Sediments from the northern Alpine Molasse Basin, the Vienna, and the Pannonian Basins located in the western and central part of the Paratethys thus provide unique information on regional changes in climate and oceanography during a period of active Alpine uplift Oxygen isotope compositions of well-preserved phosphatic fossils recovered from the sediments support deposition under sub-tropical to warm-temperate climate with water temperatures of 14 to 28 degrees C for the Miocene. delta(18)O values of fossil shark teeth are similar to those reported for other Miocene marine sections and, using the best available estimates of their biostratigraphic age, show a variation until the end of the Badenian similar to that reported for composite global record. The (87)Sr/(86)Sr isotope ratios of the fossils follow the global Miocene seawater trend, albeit with a much larger scatter. The deviations of (87)Sr/(86)Sr in the samples from the well-constrained seawater curve are interpreted as due to local input of terrestrially-derived Sr. Contribution of local sources is also reflected in the epsilon(Nd) values, consistent with input from ancient crystalline rocks (e.g., Bohemian Massif and/or Mesozoic sediments with epsilon(Nd) < -9. On the other hand, there is evidence for input from areas with Neogene volcanism as suggested by samples with elevated epsilon(Nd) values >-7. Excluding samples showing local influence on the water column, an average epsilon(Nd) value of -7.9 +/- 0.5 may be inferred for the Miocene Paratethys. This value is indistinguishable from the epsilon(Nd) value of the contemporaneous Indian Ocean, supporting a dominant role of this ocean in the Western and Central Paratethys. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. From 1983 to 2014, this monitoring effort was known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Beginning in 2015, the only statewide fish contaminant-monitoring program in Iowa was changed to the Iowa Fish Tissue Monitoring Program (IFTMP). The IFTMP is administered by IDNR and the tissue analyses are completed at the SHL. Historically, the data generated from the IFTMP have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The IFTMP incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. From 1983 to 2014, this monitoring effort was known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Beginning in 2015, the only statewide fish contaminant-monitoring program in Iowa was changed to the Iowa Fish Tissue Monitoring Program (IFTMP). The IFTMP is administered by IDNR and the analyses are completed at the SHL. Historically, the data generated from the IFTMP have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The IFTMP incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) trend, 3) follow-up, 4) turtle, and 5) random.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) trend, 3) random, 4) follow-up and 5) turtle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up. New for 2009 was the one-time inclusion of snapping turtle tissue as part of the Iowa RAFT sampling program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006a). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different types of monitoring sites: 1) status, 2) trend, and 3) follow-up.