909 resultados para fish growth
Resumo:
We analyzed Nd and Sr isotopic compositions of Neogene fossil fish teeth from two sites in the Pacific in order to determine the effect of cleaning protocols and burial diagenesis on the preservation of seawater isotopic values. Sr is incorporated into the teeth at the time of growth; thus Sr isotopes are potentially valuable for chemostratigraphy. Nd isotopes are potential conservative tracers of paleocirculation; however, Nd is incorporated post-mortem, and may record diagenetic pore waters rather than seawater. We evaluated samples from two sites (Site 807A, Ontong Java Plateau and Site 786A, Izu-Bonin Arc) that were exposed to similar bottom waters, but have distinct lithologies and pore water chemistries. The Sr isotopic values of the fish teeth appear to accurately reflect contemporaneous seawater at both sites. The excellent correlation between the Nd isotopic values of teeth from the two sites suggests that the Nd is incorporated while the teeth are in chemical equilibrium with seawater, and that the signal is preserved over geologic timescales and subsequent burial. These data also corroborate paleoseawater Nd isotopic compositions derived from Pacific ferromanganese crusts that were recovered from similar water depths (Ling et al., 1997; doi:10.1016/S0012-821X(96)00224-5). This corroboration strongly suggests that both materials preserve seawater Nd isotope values. Variations in Pacific deepwater e-Nd values are consistent with predictions for the shoaling of the Isthmus of Panama and the subsequent initiation of nonradiogenic North Atlantic Deep Water that entered the Pacific via the Antarctic Circumpolar Current.
Resumo:
Ephemeral polar glaciations during the middle-to-late Eocene (48-34 Ma) have been proposed based on far-field ice volume proxy records and near-field glacigenic sediments, although the scale, timing, and duration of these events are poorly constrained. Here we confirm the existence of a transient cool event within a new high-resolution benthic foraminiferal d18O record at Ocean Drilling Program (ODP) Site 738 (Kerguelen Plateau; Southern Ocean). This event, named the Priabonian oxygen isotope maximum (PrOM) Event, lasted ~140 kyr and is tentatively placed within magnetochron C17n.1n (~37.3 Ma) based on the correlation to ODP Site 689 (Maud Rise, Southern Ocean). A contemporaneous change in the provenance of sediments delivered to the Kerguelen Plateau occurs at the study site, determined from the <63 µm fraction of decarbonated and reductively leached sediment samples. Changes in the mixture of bottom waters, based on fossil fish tooth epsilon-Nd, were less pronounced and slower relative to the benthic d18O and terrigenous epsilon-Nd changes. Terrigenous sediment epsilon-Nd values rapidly shifted to less radiogenic signatures at the onset of the PrOM Event, indicating an abrupt change in provenance favoring ancient sources such as the Paleoproterozoic East Antarctic craton. Bottom water epsilon-Nd reached a minimum value during the PrOM Event, although the shift begins much earlier than the terrigenous epsilon-Nd excursion. The origin of the abrupt change in terrigenous sediment provenance is compatible with a change in Antarctic terrigenous sediment flux and/or source as opposed to a reorganization of ocean currents. A change in terrigenous flux and/or source of Antarctic sediments during the oxygen isotope maximum suggests a combination of cooling and ice growth in East Antarctica during the early late Eocene.
Resumo:
How organisms may adapt to rising global temperatures is uncertain, but concepts can emerge from studying adaptive physiological trait variations across existing spatial climate gradients. Many ectotherms, particularly fish, have evolved increasing genetic growth capacities with latitude (i.e. countergradient variation (CnGV) in growth), which are thought to be an adaptation primarily to strong gradients in seasonality. In contrast, evolutionary responses to gradients in mean temperature are often assumed to involve an alternative mode, 'thermal adaptation'. We measured thermal growth reaction norms in Pacific silverside populations (Atherinops affinis) occurring across a weak latitudinal temperature gradient with invariant seasonality along the North American Pacific coast. Instead of thermal adaptation, we found novel evidence for CnGV in growth, suggesting that CnGV is a ubiquitous mode of reaction-norm evolution in ectotherms even in response to weak spatial and, by inference, temporal climate gradients. A novel, large-scale comparison between ecologically equivalent Pacific versus Atlantic silversides (Menidia menidia) revealed how closely growth CnGV patterns reflect their respective climate gradients. While steep growth reaction norms and increasing growth plasticity with latitude in M. menidia mimicked the strong, highly seasonal Atlantic coastal gradient, shallow reaction norms and much smaller, latitude-independent growth plasticity in A. affinis resembled the weak Pacific latitudinal temperature gradient.
Resumo:
Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen beta chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1 gamma, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.
Resumo:
Predicted future CO2 levels can affect reproduction, growth, and behaviour of many marine organisms. However, the capacity of species to adapt to predicted changes in ocean chemistry is largely unknown. We used a unique field-based experiment to test for differential survival associated with variation in CO2 tolerance in a wild population of coral-reef fishes. Juvenile damselfish exhibited variation in their response to elevated (700 µatm) CO2 when tested in the laboratory and this influenced their behaviour and risk of mortality in the wild. Individuals that were sensitive to elevated CO2 were more active and move further from shelter in natural coral reef habitat and, as a result, mortality from predation was significantly higher compared with individuals from the same treatment that were tolerant of elevated CO2. If individual variation in CO2 tolerance is heritable, this selection of phenotypes tolerant to elevated CO2 could potentially help mitigate the effects of ocean acidification.
Resumo:
Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 µatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 µatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.
Resumo:
Experimental assessments of species vulnerabilities to ocean acidification are rapidly increasing in number, yet the potential for short- and long-term adaptation to high CO2 by contemporary marine organisms remains poorly understood. We used a novel experimental approach that combined bi-weekly sampling of a wild, spawning fish population (Atlantic silverside Menidia menidia) with standardized offspring CO2 exposure experiments and parallel pH monitoring of a coastal ecosystem. We assessed whether offspring produced at different times of the spawning season (April to July) would be similarly susceptible to elevated (1100 µatm, pHNIST = 7.77) and high CO2 levels (2300 µatm, pHNIST = 7.47). Early in the season (April), high CO2 levels significantly (p < 0.05) reduced fish survival by 54% (2012) and 33% (2013) and reduced 1 to 10 d post-hatch growth by 17% relative to ambient conditions. However, offspring from parents collected later in the season became increasingly CO2-tolerant until, by mid-May, offspring survival was equally high at all CO2 levels. This interannually consistent plasticity coincided with the rapid annual pH decline in the species' spawning habitat (mean pH: 1 April/31 May = 8.05/7.67). It suggests that parents can condition their offspring to seasonally acidifying environments, either via changes in maternal provisioning and/or epigenetic transgenerational plasticity (TGP). TGP to increasing CO2 has been shown in the laboratory but never before in a wild population. Our novel findings of direct CO2-related survival reductions in wild fish offspring and seasonally plastic responses imply that realistic assessments of species CO2-sensitivities must control for parental environments that are seasonally variable in coastal habitats.
Resumo:
Rising CO2 levels in the oceans are predicted to have serious consequences for many marine taxa. Recent studies suggest that non-genetic parental effects may reduce the impact of high CO2 on the growth, survival and routine metabolic rate of marine fishes, but whether the parental environment mitigates behavioural and sensory impairment associated with high CO2 remains unknown. Here, we tested the acute effects of elevated CO2 on the escape responses of juvenile fish and whether such effects were altered by exposure of parents to increased CO2 (transgenerational acclimation). Elevated CO2 negatively affected the reactivity and locomotor performance of juvenile fish, but parental exposure to high CO2 reduced the effects in some traits, indicating the potential for acclimation of behavioural impairment across generations. However, acclimation was not complete in some traits, and absent in others, suggesting that transgenerational acclimation does not completely compensate the effects of high CO2 on escape responses.
Resumo:
Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3 – , Cl – , NH4 + , NO2 – , NO3 – , H2PO4 – , SO4 2– , Na + , K+ , Ca 2+ and Mg 2+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO3 - , followed, in decreasing order, by Ca 2+ , H2PO4 – , K+ , Mg 2+ and SO4 2– . The total amount of feed required per mEq ranged from 1.61- 13.1 kg for the four most abundant ions (NO3 – , Ca 2+ , H2PO4 – and K+ ) at a density of 2 kg fish m–3 , suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries.