991 resultados para fire service


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings are exposed to elevated temperatures. Hence after such events there is a need to determine the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel members. This research is aimed at investigating the residual distortional buckling capacities of fire exposed cold-formed steel lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperature before they were tested to failure. Suitable finite element models of tested columns were also developed and validated using test results. The residual compression capacities of tested columns were predicted using the ambient temperature cold-formed steel design rules (AS/NZS 4600, AISI S100 and Direct Strength Method). Post-fire mechanical properties obtained from a previous study were used in this study. Comparison of results showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of buildings after fire events. This paper presents the details of these experimental and numerical studies and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, the fire resistance rating of Light gauge steel frame (LSF) wall systems is based on approximate prescriptive methods developed using limited fire tests. These fire tests are conducted using standard fire time-temperature curve given in ISO 834. However, in recent times fire has become a major disaster in buildings due to the increase in fire loads as a result of modern furniture and lightweight construction, which make use of thermoplastics materials, synthetic foams and fabrics. Therefore a detailed research study into the performance of load bearing LSF wall systems under both standard and realistic design fires on one side was undertaken to develop improved fire design rules. This study included both full scale fire tests and numerical studies of eight different LSF wall systems conducted for both the standard fire curve and the recently developed realistic design fire curves. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated and their effects were included. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the fire test and finite element analysis results for various wall configurations, steel grades, thicknesses and load ratios under both standard and realistic design fire conditions. A simplified method was also proposed to predict the fire resistance rating of LSF walls based on two sets of equations developed for the load ratio-hot flange temperature and the time-temperature relationships. This paper presents the details of this study on LSF wall systems under fire conditions and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members are widely used in load bearing Light gauge steel frame (LSF) wall systems with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. Hence there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the LSF wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the LSF wall studs. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of LSF wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strengths of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This paper presents the details of this investigation into the accuracy of using currently available fire design rules of LSF walls and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performances under fire conditions. Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing LSF wall systems. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. This paper presents the details of an investigation into the fire performance of LSF wall panels based on an extensive finite element analysis based parametric study. The LSF wall panels with eight different plasterboard-insulation configurations were considered under standard fire conditions. Effects of varying steel grades, steel thicknesses, screw spacing, plasterboard restraint, insulation materials and load ratio on the fire performance of LSF walls were investigated and the results of extensive fire performance data are presented in the form of load ratio versus time and critical hot flange (failure) temperature curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load-bearing and non-load bearing structural elements. These buildings must be properly evaluated after a fire event to assess the nature and extent of structural damage. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the structural capacity of cold-formed steel members in these buildings has been affected. Elevated temperatures during a fire event affect the structural performance of cold-formed steel members even after cooling down to ambient temperature due to the possible detrimental changes in their mechanical properties. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past and hence there is a need to investigate the post-fire mechanical properties of cold-formed steels. Therefore an experimental study was undertaken at the Queensland University of Technology to understand the residual mechanical properties of cold-formed steels after fire events. Tensile coupon tests were conducted on three different steel grades and thicknesses to obtain their stress-strain curves and relevant mechanical properties after cooling them down from different elevated temperatures. It was found that the post-fire mechanical properties of cold-formed steels are different to the original ambient temperature mechanical properties. Hence a new set of equations is proposed to predict the reduced mechanical properties of cold-formed steels after a fire event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings will be exposed to elevated temperatures. Hence after such events there is a need to evaluate the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This means conservative decisions are often made in relation to fire exposed building structures. This research is aimed at investigating the buckling capacities of fire exposed cold-formed lipped channel steel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperatures before they were tested to failure. Similarly tensile coupon tests were also undertaken after being exposed to various elevated temperatures, from which the residual mechanical properties (yield stress and Young’s modulus) of the steels used in this study were derived. Using these mechanical properties, the residual compression capacities of tested short columns were predicted using the currently used design rules in AS/NZS 4600 and AISI cold-formed steel standards. This comparison showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of fire exposed buildings. This paper presents the details of this experimental study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings can be exposed to elevated temperatures. Hence after such events there is a need to evaluate their residual strengths. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This research is aimed at investigating the distortional buckling capacities of fire exposed cold-formed lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC, and then tested to failure after cooling down. Suitable finite element models were developed with post-fire mechanical properties to simulate the behaviour of tested columns and were validated using test results. The residual compression capacities of short columns were also predicted using the current cold-formed steel standards and compared with test and finite element analysis results. This comparison showed that ambient temperature design rules for columns can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the column can be estimated after a fire event. Such residual capacity assessments will allow engineers to evaluate the safety of fire exposed buildings. This paper presents the details of this experimental study, finite element analyses and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Health service managers and policy makers are increasingly concerned about the sustainability of innovations implemented in health care settings. The increasing demand on health services requires that innovations are both effective and sustainable however research in this field is limited with multiple disciplines, approaches and paradigms influencing the field. These variations prevent a cohesive approach and therefore the accumulation of research findings in development of a body of knowledge. A theoretical framework serves to guide research, determine variables, influence data analysis and is central to the quest for ongoing knowledge development. If left unaddressed, health services research will continue in an ad hoc manner preventing full utilisation of outcomes, recommendations and knowledge for effective provision of health services. The purpose of this paper is to provide an integrative review of the literature and introduce a theoretical framework for health services innovation sustainability research based on integration and synthesis of the literature. Finally recommendations for operationalising and testing this theory will be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Every health care sector including hospice/palliative care needs to systematically improve services using patient-defined outcomes. Data from the national Australian Palliative Care Outcomes Collaboration aims to define whether hospice/palliative care patients' outcomes and the consistency of these outcomes have improved in the last 3 years. METHODS Data were analysed by clinical phase (stable, unstable, deteriorating, terminal). Patient-level data included the Symptom Assessment Scale and the Palliative Care Problem Severity Score. Nationally collected point-of-care data were anchored for the period July-December 2008 and subsequently compared to this baseline in six 6-month reporting cycles for all services that submitted data in every time period (n = 30) using individual longitudinal multi-level random coefficient models. RESULTS Data were analysed for 19,747 patients (46 % female; 85 % cancer; 27,928 episodes of care; 65,463 phases). There were significant improvements across all domains (symptom control, family care, psychological and spiritual care) except pain. Simultaneously, the interquartile ranges decreased, jointly indicating that better and more consistent patient outcomes were being achieved. CONCLUSION These are the first national hospice/palliative care symptom control performance data to demonstrate improvements in clinical outcomes at a service level as a result of routine data collection and systematic feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the practice profile of emergency nurse practitioners across Australia. Nurse practitioners have been providing health service in the emergency setting internationally for more than 30 years, and evidence supports the value of this role in terms of patient satisfaction, effectiveness in improving service indicators, and acceptability of the role. The introduction of this service model has been instrumental in reducing waiting times for low-acuity patients and impacting positively on emergency department service delivery. Recent rapid uptake of this role internationally has outpaced development of the service model to inform education and ongoing service development. This was a national study that used interpretive research methods to identify the practice profile of emergency nurse practitioners. Data were collected from December 2012 to February 2013 through in-depth interviews. An inductive approach was used in data analysis to identify conceptual themes and develop an analysis framework. The study participants worked in a range of service models and managed patient presentations across all levels of acuity and complexity. The findings show that although there is no single definable model of the emergency nurse practitioner role in Australia, there are practice features that are common across all service models; these have been conceptualized as "modes of practice." This study has produced new knowledge about the practice profile of emergency nurse practitioners. The findings will inform development of practice standards for education and continuing professional development for emergency nurse practitioners and facilitate standardized operational definitions for ongoing research into this growing service model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forty-six archaeological specimens were treated by fire-assay and subsequently analysed by ICP-MS for selected precious metals: Ph, Pt and Au. The investigation was prompted by the possibility that archaeological samples could serve as "indicators" of the precious metal composition of the clays from the excavated sites. Therefore, the experimentally obtained concentrations were carefully studied to determine if there were anomalous levels of these precious metals in the deposits from which the specimens originated. Furthermore, the analytical data were used to establish if it was feasible to distinguish ancient potsherds based on precious metal concentrations, for employment as a basis in provenance studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BreastScreen Queensland (BSQ) is a government-based health service that provides free breast cancer screening services to eligible women using digital mammography technology.' In 2007, BSQ launched its first social marketing campaign' aimed at achieving a 30 per cent increase in women's programme participation by addressing the barriers to regular screening and by dispelling myths about breast cancer (Tornabene 2010). 'The Facts' mass media social marketing campaign used a credible spokesperson, Australian journalist]ana Wendt, to deliver the call to action' Don't make excuses. Make an appointment'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the introduction of the Personally Controlled Health Record (PCEHR), the Australian public is being asked to accept greater responsibility for their healthcare. Although well designed, constructed and intentioned, policy and privacy concerns have resulted in an eHealth model that may impact future health information sharing requirements. Thus an opportunity to transform the beleaguered Australian PCEHR into a sustainable on-demand technology consumption model for patient safety must be explored further. Moreover, the current clerical focus of healthcare practitioners must be renegotiated to establish a shared knowledge creation landscape of action for safer patient interventions. To achieve this potential however requires a platform that will facilitate efficient and trusted unification of all health information available in real-time across the continuum of care. As a conceptual paper, the goal of the authors is to deliver insights into the antecedents of usage influencing superior patient outcomes within an eHealth-as-a-Service framework. To achieve this, the paper attempts to distil key concepts and identify common themes drawn from a preliminary literature review of eHealth and cloud computing concepts, specifically cloud service orchestration to establish a conceptual framework and a research agenda. Initial findings support the authors’ view that an eHealth-as-a-Service (eHaaS) construct will serve as a disruptive paradigm shift in the aggregation and transformation of health information for use as real-world knowledge in patient care scenarios. Moreover, the strategic value of extending the community Health Record Bank (HRB) model lies in the ability to automatically draw on a multitude of relevant data repositories and sources to create a single source of practice based evidence and to engage market forces to create financial sustainability.