934 resultados para finite volume method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Im Rahmen der Dichtefunktionaltheorie wurden Orbitalfunktionale wie z.B. B3LYP entwickelt. Diese lassen sich mit der „optimized effective potential“ – Methode selbstkonsistent auswerten. Während sie früher nur im 1D-Fall genau berechnet werden konnte, entwickelten Kümmel und Perdew eine Methode, bei der das OEP-Problem unter Verwendung einer Differentialgleichung selbstkonsistent gelöst werden kann. In dieser Arbeit wird ein Finite-Elemente-Mehrgitter-Verfahren verwendet, um die entstehenden Gleichungen zu lösen und damit Energien, Dichten und Ionisationsenergien für Atome und zweiatomige Moleküle zu berechnen. Als Orbitalfunktional wird dabei der „exakte Austausch“ verwendet; das Programm ist aber leicht auf jedes beliebige Funktional erweiterbar. Für das Be-Atom ließ sich mit 8.Ordnung –FEM die Gesamtenergien etwa um 2 Größenordnungen genauer berechnen als der Finite-Differenzen-Code von Makmal et al. Für die Eigenwerte und die Eigenschaften der Atome N und Ne wurde die Genauigkeit anderer numerischer Methoden erreicht. Die Rechenzeit wuchs erwartungsgemäß linear mit der Punktzahl. Trotz recht langsamer scf-Konvergenz wurden für das Molekül LiH Genauigkeiten wie bei FD und bei HF um 2-3 Größenordnungen bessere als mit Basismethoden erzielt. Damit zeigt sich, dass auf diese Weise benchmark-Rechnungen durchgeführt werden können. Diese dürften wegen der schnellen Konvergenz über der Punktzahl und dem geringen Zeitaufwand auch auf schwerere Systeme ausweitbar sein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electroosmotic flow is a convenient mechanism for transporting polar fluid in a microfluidic device. The flow is generated through the application of an external electric field that acts on the free charges that exists in a thin Debye layer at the channel walls. The charge on the wall is due to the chemistry of the solid-fluid interface, and it can vary along the channel, e.g. due to modification of the wall. This investigation focuses on the simulation of the electroosmotic flow (EOF) profile in a cylindrical microchannel with step change in zeta potential. The modified Navier-Stoke equation governing the velocity field and a non-linear two-dimensional Poisson-Boltzmann equation governing the electrical double-layer (EDL) field distribution are solved numerically using finite control-volume method. Continuities of flow rate and electric current are enforced resulting in a non-uniform electrical field and pressure gradient distribution along the channel. The resulting parabolic velocity distribution at the junction of the step change in zeta potential, which is more typical of a pressure-driven velocity flow profile, is obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During many lava dome-forming eruptions, persistent rockfalls and the concurrent development of a substantial talus apron around the foot of the dome are important aspects of the observed activity. An improved understanding of internal dome structure, including the shape and internal boundaries of the talus apron, is critical for determining when a lava dome is poised for a major collapse and how this collapse might ensue. We consider a period of lava dome growth at the Soufrière Hills Volcano, Montserrat, from August 2005 to May 2006, during which a 100 × 106 m3 lava dome developed that culminated in a major dome-collapse event on 20 May 2006. We use an axi-symmetrical Finite Element Method model to simulate the growth and evolution of the lava dome, including the development of the talus apron. We first test the generic behaviour of this continuum model, which has core lava and carapace/talus components. Our model describes the generation rate of talus, including its spatial and temporal variation, as well as its post-generation deformation, which is important for an improved understanding of the internal configuration and structure of the dome. We then use our model to simulate the 2005 to 2006 Soufrière Hills dome growth using measured dome volumes and extrusion rates to drive the model and generate the evolving configuration of the dome core and carapace/talus domains. The evolution of the model is compared with the observed rockfall seismicity using event counts and seismic energy parameters, which are used here as a measure of rockfall intensity and hence a first-order proxy for volumes. The range of model-derived volume increments of talus aggraded to the talus slope per recorded rockfall event, approximately 3 × 103–13 × 103 m3 per rockfall, is high with respect to estimates based on observed events. From this, it is inferred that some of the volumetric growth of the talus apron (perhaps up to 60–70%) might have occurred in the form of aseismic deformation of the talus, forced by an internal, laterally spreading core. Talus apron growth by this mechanism has not previously been identified, and this suggests that the core, hosting hot gas-rich lava, could have a greater lateral extent than previously considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Terrain following coordinates are widely used in operational models but the cut cell method has been proposed as an alternative that can more accurately represent atmospheric dynamics over steep orography. Because the type of grid is usually chosen during model implementation, it becomes necessary to use different models to compare the accuracy of different grids. In contrast, here a C-grid finite volume model enables a like-for-like comparison of terrain following and cut cell grids. A series of standard two-dimensional tests using idealised terrain are performed: tracer advection in a prescribed horizontal velocity field, a test starting from resting initial conditions, and orographically induced gravity waves described by nonhydrostatic dynamics. In addition, three new tests are formulated: a more challenging resting atmosphere case, and two new advection tests having a velocity field that is everywhere tangential to the terrain following coordinate surfaces. These new tests present a challenge on cut cell grids. The results of the advection tests demonstrate that accuracy depends primarily upon alignment of the flow with the grid rather than grid orthogonality. A resting atmosphere is well-maintained on all grids. In the gravity waves test, results on all grids are in good agreement with existing results from the literature, although terrain following velocity fields lead to errors on cut cell grids. Due to semi-implicit timestepping and an upwind-biased, explicit advection scheme, there are no timestep restrictions associated with small cut cells. We do not find the significant advantages of cut cells or smoothed coordinates that other authors find.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a discontinuous-Galerkin-based immersed boundary method for elasticity problems. The resulting numerical scheme does not require boundary fitting meshes and avoids boundary locking by switching the elements intersected by the boundary to a discontinuous Galerkin approximation. Special emphasis is placed on the construction of a method that retains an optimal convergence rate in the presence of non-homogeneous essential and natural boundary conditions. The role of each one of the approximations introduced is illustrated by analyzing an analog problem in one spatial dimension. Finally, extensive two- and three-dimensional numerical experiments on linear and nonlinear elasticity problems verify that the proposed method leads to optimal convergence rates under combinations of essential and natural boundary conditions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user-defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements. boundary locking is avoided and optimal-order convergence is achieved. This is shown through numerical experiments in reaction-diffusion problems. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sealed gas filled flat plate solar collectors will have stresses in the material since volume and pressure varies in the gas when the temperature changes. Several geometries were analyzed and it could be seen that it is possible reducing the stresses and improve the safety factor of the weakest point in the construction by using larger area and/or reducing the distance between glass and absorber and/or change width and height relationship so the tubes are getting longer. Further it could be shown that the safety factor won't always get improved with reinforcements. It is so because when an already strong part of the collector gets reinforced it will expose weaker parts for higher stresses. The finite element method was used for finding out the stresses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The topology optimization problem characterize and determine the optimum distribution of material into the domain. In other words, after the definition of the boundary conditions in a pre-established domain, the problem is how to distribute the material to solve the minimization problem. The objective of this work is to propose a competitive formulation for optimum structural topologies determination in 3D problems and able to provide high-resolution layouts. The procedure combines the Galerkin Finite Elements Method with the optimization method, looking for the best material distribution along the fixed domain of project. The layout topology optimization method is based on the material approach, proposed by Bendsoe & Kikuchi (1988), and considers a homogenized constitutive equation that depends only on the relative density of the material. The finite element used for the approach is a four nodes tetrahedron with a selective integration scheme, which interpolate not only the components of the displacement field but also the relative density field. The proposed procedure consists in the solution of a sequence of layout optimization problems applied to compliance minimization problems and mass minimization problems under local stress constraint. The microstructure used in this procedure was the SIMP (Solid Isotropic Material with Penalty). The approach reduces considerably the computational cost, showing to be efficient and robust. The results provided a well defined structural layout, with a sharpness distribution of the material and a boundary condition definition. The layout quality was proporcional to the medium size of the element and a considerable reduction of the project variables was observed due to the tetrahedrycal element

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The scheme is based on Ami Harten's ideas (Harten, 1994), the main tools coming from wavelet theory, in the framework of multiresolution analysis for cell averages. But instead of evolving cell averages on the finest uniform level, we propose to evolve just the cell averages on the grid determined by the significant wavelet coefficients. Typically, there are few cells in each time step, big cells on smooth regions, and smaller ones close to irregularities of the solution. For the numerical flux, we use a simple uniform central finite difference scheme, adapted to the size of each cell. If any of the required neighboring cell averages is not present, it is interpolated from coarser scales. But we switch to ENO scheme in the finest part of the grids. To show the feasibility and efficiency of the method, it is applied to a system arising in polymer-flooding of an oil reservoir. In terms of CPU time and memory requirements, it outperforms Harten's multiresolution algorithm.The proposed method applies to systems of conservation laws in 1Dpartial derivative(t)u(x, t) + partial derivative(x)f(u(x, t)) = 0, u(x, t) is an element of R-m. (1)In the spirit of finite volume methods, we shall consider the explicit schemeupsilon(mu)(n+1) = upsilon(mu)(n) - Deltat/hmu ((f) over bar (mu) - (f) over bar (mu)-) = [Dupsilon(n)](mu), (2)where mu is a point of an irregular grid Gamma, mu(-) is the left neighbor of A in Gamma, upsilon(mu)(n) approximate to 1/mu-mu(-) integral(mu-)(mu) u(x, t(n))dx are approximated cell averages of the solution, (f) over bar (mu) = (f) over bar (mu)(upsilon(n)) are the numerical fluxes, and D is the numerical evolution operator of the scheme.According to the definition of (f) over bar (mu), several schemes of this type have been proposed and successfully applied (LeVeque, 1990). Godunov, Lax-Wendroff, and ENO are some of the popular names. Godunov scheme resolves well the shocks, but accuracy (of first order) is poor in smooth regions. Lax-Wendroff is of second order, but produces dangerous oscillations close to shocks. ENO schemes are good alternatives, with high order and without serious oscillations. But the price is high computational cost.Ami Harten proposed in (Harten, 1994) a simple strategy to save expensive ENO flux calculations. The basic tools come from multiresolution analysis for cell averages on uniform grids, and the principle is that wavelet coefficients can be used for the characterization of local smoothness.. Typically, only few wavelet coefficients are significant. At the finest level, they indicate discontinuity points, where ENO numerical fluxes are computed exactly. Elsewhere, cheaper fluxes can be safely used, or just interpolated from coarser scales. Different applications of this principle have been explored by several authors, see for example (G-Muller and Muller, 1998).Our scheme also uses Ami Harten's ideas. But instead of evolving the cell averages on the finest uniform level, we propose to evolve the cell averages on sparse grids associated with the significant wavelet coefficients. This means that the total number of cells is small, with big cells in smooth regions and smaller ones close to irregularities. This task requires improved new tools, which are described next.