823 resultados para feedback loop
Resumo:
A robust pole assignment by linear state feedback is achieved in state-space representation by selecting a feedback which minimises the conditioning of the assigned eigenvalues of the closed-loop system. It is shown here that when this conditioning is minimised, a lower bound on the stability margin in the frequency domain is maximised.
Resumo:
The robustness of state feedback solutions to the problem of partial pole placement obtained by a new projection procedure is examined. The projection procedure gives a reduced-order pole assignment problem. It is shown that the sensitivities of the assigned poles in the complete closed-loop system are bounded in terms of the sensitivities of the assigned reduced-order poles, and the sensitivities of the unaltered poles are bounded in terms of the sensitivities of the corresponding open-loop poles. If the assigned poles are well-separated from the unaltered poles, these bounds are expected to be tight. The projection procedure is described in [3], and techniques for finding robust (or insensitive) solutions to the reduced-order problem are given in [1], [2].
Resumo:
Coordinate free conditions are given for pole assignment by feedback in linear descriptor (singular) systems which guarantee closed-loop regularity. These conditions are shown to be both necessary and sufficient for assignment of the maximum possible number of finite poles. Transformation to special coordinates are not used and the results provide a robust algorithm for the computation of the required feedback.
Resumo:
A number of computationally reliable direct methods for pole assignment by feedback have recently been developed. These direct procedures do not necessarily produce robust solutions to the problem, however, in the sense that the assigned poles are insensitive to perturbalions in the closed-loop system. This difficulty is illustrated here with results from a recent algorithm presented in this TRANSACTIONS and its causes are examined. A measure of robustness is described, and techniques for testing and improving robustness are indicated.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
The solution of the pole assignment problem by feedback in singular systems is parameterized and conditions are given which guarantee the regularity and maximal degree of the closed loop pencil. A robustness measure is defined, and numerical procedures are described for selecting the free parameters in the feedback to give optimal robustness.