965 resultados para extension circular
Resumo:
The growth of magnetic fields in the density gradient of a rarefaction wave has been observed in simulations and in laboratory experiments. The thermal anisotropy of the electrons, which gives rise to the magnetic instability, is maintained by the ambipolar electric field. This simple mechanism could be important for the magnetic field amplification in astrophysical jets or in the interstellar medium ahead of supernova remnant shocks. The acceleration of protons and the generation of a magnetic field by the rarefaction wave, which is fed by an expanding circular plasma cloud, is examined here in form of a 2D particle-in-cell simulation. The core of the plasma cloud is modeled by immobile charges, and the mobile protons form a small ring close to the cloud's surface. The number density of mobile protons is thus less than that of the electrons. The protons of the rarefaction wave are accelerated to 1/10 of the electron thermal speed, and the acceleration results in a thermal anisotropy of the electron distribution in the entire plasma cloud. The instability in the rarefaction wave is outrun by a TM wave, which grows in the dense core distribution, and its magnetic field expands into the rarefaction wave. This expansion drives a secondary TE wave. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769128]
Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors
Resumo:
This study presents the use of periodic arrays of freestanding slot frequency-selective screens (FSS) as a means for generating circularly polarised signals from an incident linearly polarised signal at normal incidence to the structure. Measured and simulated results for crossed, linear and various ring slot element shapes in single and double-layer polarisation convertor structures are presented for 10 GHz operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one-layer perforated screen design and that the rate of change is lower than the double-layer structures. An insertion loss of 0.34 dB can be achieved for the split circular ring double-layer periodic array, and of the three topologies presented the hexagonal split-ring polarisation convertor gives the lowest variation of AR with angle of incidence 1.8 dB/45° and 3.6 dB/45° for the single and double-screen FSS, respectively. In addition, their tolerance to angle of incidence variation is presented. The capability of the surfaces reported here as twist polariser or spatial isolator components has been demonstrated with up to -30 dB isolation between incident and re-reflected signals for the double-layer designs being measured. © 2010 The Institution of Engineering and Technology.
Resumo:
The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical
Resumo:
A 42-year-old man has been under long-term follow-up since he was a child for congenital glaucoma and buphthalmos in both eyes. His left eye best corrected visual acuity (BCVA) was counting fingers, due to end-stage glaucoma. He was on maximal medical therapy with an intraocular pressure (IOP) maintained at mid to low twenties. His right eye, the only seeing eye, had a BCVA of 6/9. This eye had undergone multiple glaucoma laser and surgical procedures, including an initial first Molteno drainage device inserted superonasally that failed in April 2003 due to fibrotic membrane over the tube opening. As a result, he subsequently had a second Molteno drainage device inserted inferotemporally. To further maximize his vision he had an uncomplicated cataract extraction and intraocular lens implant in December 2004, after which he developed postoperative cystoid macular edema and corneal endothelial failure. He underwent a penetrating keratoplasty in the right eye thereafter in March 2007. After approximately a year, the second Molteno device developed drainage tube retraction, which was managed surgically to maintain optimum IOP in the right eye. His right eye vision to date is maintained at 6/12. © 2011 Mustafa and Azuara-Blanco.
Resumo:
Conventional approaches of digital modulation schemes make use of amplitude, frequency and/or phase as modulation characteristic to transmit data. In this paper, we exploit circular polarization (CP) of the propagating electromagnetic carrier as modulation attribute which is a novel concept in digital communications. The requirement of antenna alignment to maximize received power is eliminated for CP signals and these are not affected by linearly polarized jamming signals. The work presents the concept of Circular Polarization Modulation for 2, 4 and 8 states of carrier and refers them as binary circular polarization modulation (BCPM), quaternary circular polarization modulation (QCPM) and 8-state circular polarization modulation (8CPM) respectively. Issues of modulation, demodulation, 3D symbol constellations and 3D propagating waveforms for the proposed modulation schemes are presented and analyzed in the presence of channel effects, and they are shown to have the same bit error performance in the presence of AWGN compared with conventional schemes while provide 3dB gain in the flat Rayleigh fading channel.
Resumo:
The dimensions and cavity sizes of the molecular capsules with the general formula [V10O18L4]10− can be controlled modularly through the nature of the bifunctional, rigid organophosphonate ligands L1 and L2 (L1 = bis(4-phosphonatophenyl)ethyne and L2 = bis(4-phosphonatophenyl)butadiyne); the solution stability of the molecular entities as demonstrated by ESI-MS studies permits their assembly on the Au(111) surface on a sub-monolayer scale giving rise to a 2D supramolecular structure that is comparable to the packing arrangements of the capsules in the crystal structures.
Resumo:
Single and double layer frequency selective surfaces (FSS) for Circular polarization (CP) operation were designed. The designed FSS provide reflection in the Ku-band (11.7 – 12.75 GHz) and transmission in the Ka-band (17.3 – 20.2 GHz). CP is conserved in each of the bands. For the double layer design over the Ku-band the reflection loss was less than 0.05 dB for TE and TM polarizations while the axial ratio was below 0.2 dB. Over the Ka-band transmission loss and axial ratio were each less than 0.25 dB.
Resumo:
A frequency selective surface (FSS) which can be utilized as a diplexer for circular polarization (CP) applications is proposed. The structure consists of two dipole-based FSS placed parallel to each other. The dipoles in one array are rotated by 90° with respect to those in the other. For an angle of incidence of 45° at one frequency band the structure allows a CP signal to be transmitted while at a further band it converts a linearly polarized (LP) signal to CP upon reflection. Full-wave simulation results validated the concept.