942 resultados para equilibrium asset pricing models with latent variables
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.
Resumo:
Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.
Resumo:
BACKGROUND Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans. RESULTS We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans. CONCLUSIONS We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury.
Resumo:
Independent Components Analysis is a Blind Source Separation method that aims to find the pure source signals mixed together in unknown proportions in the observed signals under study. It does this by searching for factors which are mutually statistically independent. It can thus be classified among the latent-variable based methods. Like other methods based on latent variables, a careful investigation has to be carried out to find out which factors are significant and which are not. Therefore, it is important to dispose of a validation procedure to decide on the optimal number of independent components to include in the final model. This can be made complicated by the fact that two consecutive models may differ in the order and signs of similarly-indexed ICs. As well, the structure of the extracted sources can change as a function of the number of factors calculated. Two methods for determining the optimal number of ICs are proposed in this article and applied to simulated and real datasets to demonstrate their performance.
Resumo:
Las organizaciones son sistemas o unidades sociales, compuestas por personas que interactúan entre sí, para lograr objetivos comunes. Uno de sus objetivos es la productividad. La productividad es un constructo multidimensional en la que influyen aspectos tecnológicos, económicos, organizacionales y humanos. Diversos estudios apoyan la influencia de la motivación de las personas, de las habilidades y destrezas de los individuos, de su talento para desempeñar el trabajo, así como también del ambiente de trabajo presente en la organización, en la productividad. Por esta razón, el objetivo general de la investigación, es analizar la influencia entre los factores humanos y la productividad. Se hará énfasis en la persona como factor productivo clave, para responder a las interrogantes de la investigación, referidas a cuáles son las variables humanas que inciden en la productividad, a la posibilidad de plantear un modelo de productividad que considere el impacto del factor humano y la posibilidad de encontrar un método para la medición de la productividad que contemple la percepción del factor humano. Para resolver estas interrogantes, en esta investigación se busca establecer las relaciones entre las variables humanas y la productividad, vistas desde la perspectiva de tres unidades de análisis diferentes: individuo, grupo y organización, para la formulación de un modelo de productividad humana y el diseño de un instrumento para su medida. Una de las principales fuente de investigación para la elección de las variables humanas, la formulación del modelo, y el método de medición de la productividad, fue la revisión de la literatura disponible sobre la productividad y el factor humano en las organizaciones, lo que facilitó el trazado del marco teórico y conceptual. Otra de las fuentes para la selección fue la opinión de expertos y de especialistas directamente involucrados en el sector eléctrico venezolano, lo cual facilitó la obtención de un modelo, cuyas variables reflejasen la realidad del ámbito en estudio. Para aportar una interpretación explicativa del fenómeno, se planteó el modelo de los Factores Humanos vs Productividad (MFHP), el cual se analizó desde la perspectiva del análisis causal y fue conformado por tres variables latentes exógenas denominadas: factores individuales, factores grupales y factores organizacionales, que estaban relacionadas con una variable latente endógena denominada productividad. El MFHP se formuló mediante la metodología de los modelos de ecuaciones estructurales (SEM). Las relaciones inicialmente propuestas entre las variables latentes fueron corroboradas por los ajustes globales del modelo, se constataron las relaciones entre las variables latentes planteadas y sus indicadores asociados, lo que facilitó el enunciado de 26 hipótesis, de las cuales se comprobaron 24. El modelo fue validado mediante la estrategia de modelos rivales, utilizada para comparar varios modelos SEM, y seleccionar el de mejor ajuste, con sustento teórico. La aceptación del modelo se realizó mediante la evaluación conjunta de los índices de bondad de ajuste globales. Asimismo, para la elaboración del instrumento de medida de la productividad (IMPH), se realizó un análisis factorial exploratorio previo a la aplicación del análisis factorial confirmatorio, aplicando SEM. La revisión de los conceptos de productividad, la incidencia del factor humano, y sus métodos de medición, condujeron al planteamiento de métodos subjetivos que incorporaron la percepción de los principales actores del proceso productivo, tanto para la selección de las variables, como para la formulación de un modelo de productividad y el diseño de un instrumento de medición de la productividad. La contribución metodológica de este trabajo de investigación, ha sido el empleo de los SEM para relacionar variables que tienen que ver con el comportamiento humano en la organización y la productividad, lo cual abre nuevas posibilidades a la investigación en este ámbito. Organizations are social systems or units composed of people who interact with each other to achieve common goals. One objective is productivity, which is a multidimensional construct influenced by technological, economic, organizational and human aspects. Several studies support the influence on productivity of personal motivation, of the skills and abilities of individuals, of their talent for the job, as well as of the work environment present in the organization. Therefore, the overall objective of this research is to analyze the influence between human factors and productivity. The emphasis is on the individual as a productive factor which is key in order to answer the research questions concerning the human variables that affect productivity and to address the ability to propose a productivity model that considers the impact of the human factor and the possibility of finding a method for the measurement of productivity that includes the perception of the human factor. To consider these questions, this research seeks to establish the relationships between human and productivity variables, as seen from the perspective of three different units of analysis: the individual, the group and the organization, in order to formulate a model of human productivity and to design an instrument for its measurement. A major source of research for choosing the human variables, model formulation, and method of measuring productivity, was the review of the available literature on productivity and the human factor in organizations which facilitated the design of the theoretical and conceptual framework. Another source for the selection was the opinion of experts and specialists directly involved in the Venezuelan electricity sector which facilitated obtaining a model whose variables reflect the reality of the area under study. To provide an interpretation explaining the phenomenon, the model of the Human Factors vs. Productivity Model (HFPM) was proposed. This model has been analyzed from the perspective of causal analysis and was composed of three latent exogenous variables denominated: individual, group and organizational factors which are related to a latent variable denominated endogenous productivity. The HFPM was formulated using the methodology of Structural Equation Modeling (SEM). The initially proposed relationships between latent variables were confirmed by the global fits of the model, the relationships between the latent variables and their associated indicators enable the statement of 26 hypotheses, of which 24 were confirmed. The model was validated using the strategy of rival models, used for comparing various SEM models and to select the one that provides the best fit, with theoretical support. The acceptance of the model was performed through the joint evaluation of the adequacy of global fit indices. Additionally, for the development of an instrument to measure productivity, an exploratory factor analysis was performed prior to the application of a confirmatory factor analysis, using SEM. The review of the concepts of productivity, the impact of the human factor, and the measurement methods led to a subjective methods approach that incorporated the perception of the main actors of the production process, both for the selection of variables and for the formulation of a productivity model and the design of an instrument to measure productivity. The methodological contribution of this research has been the use of SEM to relate variables that have to do with human behavior in the organization and with productivity, opening new possibilities for research in this area.
Resumo:
The discretionality and the appraisers’ subjectivity that characterize traditional real estate valuation are still allowed to take part in the formation of the asset price even when respecting international standards (EVS, IVS) or Appraisal Institution´s regulations (TEGOVA, RICS, etc.). The application of econometric and statistical methods to real estate valuation aims at the elimination of subjectivity on the appraisal process. But the unanswered question underneath this subject is the following: How important is the subjective component on real estate appraisal value formation? On this study Structural Equation Models (SEM) are used to determine the importance of the objective and subjective components on real estate valuation value formation as well as the weight of economic factors and the current economic context on real estate appraisal for mortgage purposes price formation. There were used two latent variables, Objective Component and Subjective Component, witch aggregate objective observed variables and subjective observed and unobserved variables, respectively. Factorial Exploratory Analysis is the statistical technique used in order to link the observed variables extracted from the valuation appraisal reports to the latent constructs derived from the theoretical model. SEM models were used to refine the model, eliminate non‐significant variables and to determine the weight of Objective and Subjective latent variables. These techniques were applied to a sample of over 11.000 real estate assets appraisal reports throughout the time period between November of 2006 and April of 2012. The real assets used on this study are located on Lisbon’s Metropolitan Area – “Grande Lisboa” –, Portugal. From this study, we conclude that Subjective Component has a considerable weight on real estate appraisal value formation and that the external factor Economic Situation has a very small impact on real estate appraisal value formation.
Resumo:
The study examines the Capital Asset Pricing Model (CAPM) for the mining sector using weekly stock returns from 27 companies traded on the New York Stock Exchange (NYSE) or on the London Stock Exchange (LSE) for the period of December 2008 to December 2010. The results support the use of the CAPM for the allocation of risk to companies. Most companies involved in precious metals (particularly gold), which have a beta value less than unity (Table 1), have been actuated as shelter values during the financial crisis. Values of R2 do not shown very explanatory power of fitted models (R2 < 70 %). Estimated coefficients beta are not sufficient to determine the expected returns on securities but the results of the tests conducted on sample data for the period analysed do not appear to clearly reject the CAPM
Resumo:
This paper presents a new methodology to build parametric models to estimate global solar irradiation adjusted to specific on-site characteristics based on the evaluation of variable im- portance. Thus, those variables higly correlated to solar irradiation on a site are implemented in the model and therefore, different models might be proposed under different climates. This methodology is applied in a study case in La Rioja region (northern Spain). A new model is proposed and evaluated on stability and accuracy against a review of twenty-two already exist- ing parametric models based on temperatures and rainfall in seventeen meteorological stations in La Rioja. The methodology of model evaluation is based on bootstrapping, which leads to achieve a high level of confidence in model calibration and validation from short time series (in this case five years, from 2007 to 2011). The model proposed improves the estimates of the other twenty-two models with average mean absolute error (MAE) of 2.195 MJ/m2 day and average confidence interval width (95% C.I., n=100) of 0.261 MJ/m2 day. 41.65% of the daily residuals in the case of SIAR and 20.12% in that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two networks (10% and 5%, respectively). Relative differences between measured and estimated irradiation on an annual cumulative basis are below 4.82%. Thus, the proposed model might be useful to estimate annual sums of global solar irradiation, reaching insignificant differences between measurements from pyranometers.
Resumo:
Esta Tesis plantea la pregunta de si el uso de morteros con parafinas microencapsuladas combinado con colectores solares térmicos puede reducir el consumo de energías convencionales, en un sistema tradicional de suelo radiante. Se pretende contribuir al conocimiento acerca del efecto que produce en el edificio, el calor latente acumulado en suelos radiantes, utilizando morteros de cemento Portland con material de cambio de fase (PCM), en conjunto con la energía solar. Para cumplir con este propósito, la investigación se desarrolla considerando diversos aspectos. En primer lugar, se revisa y analiza la documentación disponible en la actualidad, de almacenamiento de energía mediante calor latente en la construcción, y en particular la aplicación de microcápsulas de PCM en morteros y suelos radiantes. También se revisa la documentación relacionada con la aplicación de la energía solar térmica y en suelo radiante. Se analiza la normativa vigente respecto al material, a los colectores solares y al suelo radiante. Se verifica que no hay normativa relacionada con mortero-PCM, debido a esto se aplica en la investigación una adaptación de la existente. La fase experimental desarrollada esta principalmente dirigida a la cuantificación, caracterización y evaluación de las propiedades físicas, mecánicas y térmicas del mortero de cemento Portland con parafinas microencapsuladas. Los resultados obtenidos y su análisis, permiten conocer el comportamiento de este tipo de morteros, con las diferentes variables aplicadas en la investigación. Además, permite disponer de la información necesaria, para crear una metodología para el diseño de morteros con parafina microencapsulada, tanto del punto de vista de su resistencia a la compresión y contenido de PCM, como de su comportamiento térmico como acumulador de calor. Esto se logra procesando la información obtenida y generando modelos matemáticos, para dosificar mezclas, y predecir la acumulación de calor en función de su composición. Se determinan los tipos y cantidades de PCM, y el cemento más adecuado. Se obtienen importantes conclusiones respecto a los aspectos constructivos a considerar en la aplicación de morteros con PCM, en suelo radiante. Se analiza y evalúa la demanda térmica que se puede cubrir con el suelo radiante, utilizando morteros con parafina microencapsulada, a través de la acumulación de energía solar producida por colectores solares, para condiciones climáticas, técnicas y tipologías constructivas específicas. Se determina que cuando los paneles cubren más de 60 % de la demanda por calefacción, se puede almacenar en los morteros con PCM, el excedente generado durante el día. Se puede cubrir la demanda de acumulación de energía con los morteros con PCM, en la mayoría de los casos analizados. Con esto, se determina que el uso de morteros con PCM, aporta a la eficiencia energética de los edificios, disminuyendo el consumo de energías convencionales, reemplazándola por energía solar térmica. En esta investigación, el énfasis está en las propiedades del material mortero de cemento-PCM y en poder generar metodologías que faciliten su uso. Se aborda el uso de la energía solar, para verificar que es posible su acumulación en morteros con PCM aplicados en suelo radiante, posibilitando el reemplazo de energías convencionales. Quedan algunos aspectos de la aplicación de energía solar a suelo radiante con morteros con PCM, que no han sido tratados con la profundidad que requieren, y que resultan interesantes de evaluar en este tipo de aplicaciones constructivas, como entre otros, los relacionados con la cuantificación de los ahorros de energía en las diferentes estaciones del año, de la estabilización de temperaturas internas, su análisis de costo y la optimización de este tipo de sistemas para utilización en verano, los que dan pie para otras Tesis o proyectos de investigación. ABSTRACT This Thesis proposes the question of whether the use of mortars with microencapsulated paraffin combined with solar thermal collectors can reduce conventional energy consumption in a traditional heating floor system. It aims to contribute to knowledge about the effect that it has on the building, the latent heat accumulated in heating floor, using Portland cement mortars with phase change material (PCM), in conjunction with solar energy. To fulfill this purpose, the research develops it considering various aspects. First, it reviews and analyzes the documentation available today, about energy storage by latent heat in the building, and in particular the application of PCM microcapsules in mortars and heating floors. It also reviews the documentation related to the application of solar thermal energy and heating floor. Additionally, it analyzes the current regulations regarding to material, solar collectors and heating floors. It verifies that there aren’t regulations related to PCM mortar, due to this, it applies an adaptation in the investigation. The experimental phase is aimed to the quantification, mainly, characterization and evaluation of physical, mechanical and thermal properties of Portland cement mortar with microencapsulated paraffin. The results and analysis, which allow us to know the behavior of this type of mortars with different variables applied in research. It also allows having the information necessary to create a methodology for designing mortars with microencapsulated paraffin, both from the standpoint of its resistance to compression and PCM content, and its thermal performance as a heat accumulator. This accomplishes by processing the information obtained, and generating mathematical models for dosing mixtures, and predicting heat accumulation depending on their composition. The research determines the kinds and amounts of PCM, and the most suitable cement. Relevant conclusions obtain it regarding constructive aspects to consider in the implementation of PCM mortars in heating floor. Also, it analyzes and evaluates the thermal demand that it can be covered in heating floor using microencapsulated paraffin mortars, through the accumulation of solar energy produced by solar collectors to weather conditions, technical and specific building typologies. It determines that if the panels cover more than 60% of the demand for heating, the surplus generated during the day can be stored in PCM mortars. It meets the demand of energy storage with PCM mortars, in most of the cases analyzed. With this, it determines that the use of PCM mortars contributes to building energy efficiency, reducing consumption of conventional energy, replacing it with solar thermal energy. In this research approaches the use of solar energy to determine that it’s possible to verify its accumulation in PCM mortars applied in heating floor, enabling the replacement of conventional energy. The emphasis is on material properties of PCM mortar and, in order to generate methodologies to facilitate their use. There are some aspects of solar energy application in PCM mortars in heating floor, which have not been discussed with the depth required, and that they are relevant to evaluate in this kind of construction applications, including among others: the applications related to the energy savings quantification in different seasons of the year, the stabilizing internal temperatures, its cost analysis and optimization of these systems for use in summer, which can give ideas for other thesis or research projects.
Resumo:
In order to achieve to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. In the transport modelling literature there has been an increasing awareness that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users? social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced, but links between international and Spanish perspectives are rarely deal. In this paper, factorial and path analyses through a Multiple-Indicator Multiple-Cause (MIMIC) model are used to understand and describe the relationship between the different psychological and environmental constructs with social influence and socioeconomic variables. The MIMIC model generates Latent Variables (LVs) to be incorporated sequentially into Discrete Choice Models (DCM) where the levels of service and cost attributes of travel modes are also included directly to measure the effect of the transport policies that have been introduced in Madrid during the last three years in the context of the economic crisis. The data used for this paper are collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) of Madrid.
Resumo:
In order to achieve to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. In the transport modelling literature there has been an increasing awareness that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users? social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced, but links between international and Spanish perspectives are rarely deal. In this paper, factorial and path analyses through a Multiple-Indicator Multiple-Cause (MIMIC) model are used to understand and describe the relationship between the different psychological and environmental constructs with social influence and socioeconomic variables. The MIMIC model generates Latent Variables (LVs) to be incorporated sequentially into Discrete Choice Models (DCM) where the levels of service and cost attributes of travel modes are also included directly to measure the effect of the transport policies that have been introduced in Madrid during the last three years in the context of the economic crisis. The data used for this paper are collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) of Madrid.
Resumo:
El propósito de esta tesis doctoral es el desarrollo de un modelo integral de evaluación de la gestión para instituciones de educación superior (IES), fundamentado en valorar la gestión de diferentes subsistemas que la integran, así como estudiar el impacto en la planificación y gestión institucional. Este Modelo de Evaluación Institucional fue denominado Modelo Integral de Evaluación de Gestión de las IES (MIEGIES), que incorpora la gestión de la complejidad, los aspectos gerenciales, el compromiso o responsabilidad social, los recursos, además de los procesos propios universitarios con una visión integral de la gestión. Las bases conceptuales se establecen por una revisión del contexto mundial de la educación superior, pasando por un análisis sobre evaluación y calidad en entornos universitarios. La siguiente reflexión conceptual versó sobre la gestión de la complejidad, de la gestión gerencial, de la gestión de responsabilidad social universitaria, de la gestión de los recursos y de la gestión de los procesos, seguida por un aporte sobre modelaje y modelos. Para finalizar, se presenta un resumen teórico sobre el alcance de la aplicación de ecuaciones estructurales para la validación de modelos. El desarrollo del modelo conceptual, dimensiones e indicadores, fue efectuado aplicando los principios de la metodología de sistemas suaves –SSM. Para ello, se identifica la definición raíz (DR), la razón sistémica de ser del modelo, para posteriormente desarrollar sus componentes y principios conceptuales. El modelo quedó integrado por cinco subsistemas, denominados: de la Complejidad, de la Responsabilidad Social Universitaria, Gerencial, de Procesos y de Recursos. Los subsistemas se consideran como dimensiones e indicadores para el análisis y son los agentes críticos para el funcionamiento de una IES. Los aspectos referidos a lo Epistemetodológico, comenzó por identificar el enfoque epistemológico que sustenta el abordaje metodológico escogido. A continuación se identifican los elementos clásicos que se siguieron para llevar a cabo la investigación: Alcance o profundidad, población y muestra, instrumentos de recolección de información y su validación, para finalizar con la explicación procedimental para validar el modelo MIEGIES. La población considerada para el estudio empírico de validación fueron 585 personas distribuidas entre alumnos, docentes, personal administrativo y directivos de una Universidad Pública Venezolana. La muestra calculada fue de 238 individuos, número considerado representativo de la población. La aplicación de los instrumentos diseñados y validados permitió la obtención de un conjunto de datos, a partir de los cuales se validó el modelo MIEGIES. La validación del Modelo MIGEIES parte de sugerencias conceptuales para el análisis de los datos. Para ello se identificaron las variables relevantes, que pueden ser constructos o conceptos, las variables latentes que no pueden ser medidas directamente, sino que requiere seleccionar los indicadores que mejor las representan. Se aplicó la estrategia de modelación confirmatoria de los Modelos de Ecuaciones Estructurales (SEM). Para ello se parte de un análisis descriptivo de los datos, estimando la fiabilidad. A continuación se aplica un análisis factorial exploratorio y un análisis factorial confirmatorio. Para el análisis de la significancia del modelo global y el impacto en la planificación y gestión, se consideran el análisis de coeficientes de regresión y la tabla de ANOVA asociada, la cual de manera global especifica que el modelo planteado permite explicar la relación entre las variables definidas para la evaluación de la gestión de las IES. Así mismo, se encontró que este resultado de manera global explica que en la evaluación institucional tiene mucha importancia la gestión de la calidad y las finanzas. Es de especial importancia destacar el papel que desarrolla la planificación estratégica como herramienta de gestión que permite apoyar la toma de decisiones de las organizaciones en torno al quehacer actual y al camino que deben recorrer en el futuro para adecuarse a los cambios y a las demandas que les impone el entorno. El contraste estadístico de los dos modelos ajustados, el teórico y el empírico, permitió a través de técnicas estadísticas multivariables, demostrar de manera satisfactoria, la validez y aplicación del modelo propuesto en las IES. Los resultados obtenidos permiten afirmar que se pueden estimar de manera significativa los constructos que definen la evaluación de las instituciones de educación superior mediante el modelo elaborado. En el capítulo correspondiente a Conclusiones, se presenta en una de las primeras instancias, la relación conceptual propuesta entre los procesos de evaluación de la gestión institucional y de los cinco subsistemas que la integran. Posteriormente se encuentra que los modelos de ecuaciones estructurales con base en la estrategia de modelación confirmatoria es una herramienta estadística adecuada en la validación del modelo teórico, que fue el procedimiento propuesto en el marco de la investigación. En cuanto al análisis del impacto del Modelo en la Planificación y la Gestión, se concluye que ésta es una herramienta útil para cerrar el círculo de evaluación institucional. La planificación y la evaluación institucional son procesos inherentes a la filosofía de gestión. Es por ello que se recomienda su práctica como de necesario cumplimiento en todas las instancias funcionales y operativas de las Instituciones de Educación Superior. ABSTRACT The purpose of this dissertation is the development of a comprehensive model of management evaluation for higher education institutions (HEIs), based on evaluating the management of different subsystems and study the impact on planning and institutional management. This model was named Institutional Assessment Comprehensive Evaluation Model for the Management of HEI (in Spanish, MIEGIES). The model incorporates the management of complexity, management issues, commitment and social responsibility and resources in addition to the university's own processes with a comprehensive view of management. The conceptual bases are established by a review of the global context of higher education, through analysis and quality assessment in university environments. The following conceptual discussions covered the management of complexity, management practice, management of university social responsibility, resources and processes, followed by a contribution of modeling and models. Finally, a theoretical overview of the scope of application of structural equation model (SEM) validation is presented. The development of the conceptual model, dimensions and indicators was carried out applying the principles of soft systems methodology (SSM). For this, the root definition (RD), the systemic rationale of the model, to further develop their components and conceptual principles are identified. The model was composed of five subsystems, called: Complexity, University Social Responsibility, Management, Process and Resources. The subsystems are considered as dimensions and measures for analysis and are critical agents for the functioning of HEIs. In matters relating to epistemology and methodology we began to identify the approach that underpins the research: Scope, population and sample and data collection instruments. The classic elements that were followed to conduct research are identified. It ends with the procedural explanation to validate the MIEGIES model. The population considered for the empirical validation study was composed of 585 people distributed among students, faculty, staff and authorities of a public Venezuelan university. The calculated sample was 238 individuals, number considered representative of the population. The application of designed and validated instruments allowed obtaining a data set, from which the MIEGIES model was validated. The MIGEIES Model validation is initiated by the theoretical analysis of concepts. For this purpose the relevant variables that can be concepts or constructs were identified. The latent variables cannot be measured directly, but require selecting indicators that best represent them. Confirmatory modeling strategy of Structural Equation Modeling (SEM) was applied. To do this, we start from a descriptive analysis of the data, estimating reliability. An exploratory factor analysis and a confirmatory factor analysis were applied. To analyze the significance of the overall models the analysis of regression coefficients and the associated ANOVA table are considered. This comprehensively specifies that the proposed model can explain the relationship between the variables defined for evaluating the management of HEIs. It was also found that this result comprehensively explains that for institutional evaluation quality management and finance are very important. It is especially relevant to emphasize the role developed by strategic planning as a management tool that supports the decision making of organizations around their usual activities and the way they should evolve in the future in order to adapt to changes and demands imposed by the environment. The statistical test of the two fitted models, the theoretical and the empirical, enabled through multivariate statistical techniques to demonstrate satisfactorily the validity and application of the proposed model for HEIs. The results confirm that the constructs that define the evaluation of HEIs in the developed model can be estimated. In the Conclusions section the conceptual relationship between the processes of management evaluation and the five subsystems that comprise it are shown. Subsequently, it is indicated that structural equation models based on confirmatory modeling strategy is a suitable statistical tool in validating the theoretical model, which was proposed in the framework of the research procedure. The impact of the model in Planning and Management indicates that this is a useful tool to complete the institutional assessment. Planning and institutional assessment processes are inherent in management philosophy. That is why its practice is recommended as necessary compliance in all functional and operational units of HEIs.
Resumo:
Perceptual voice evaluation according to the GRBAS scale is modelled using a linear combination of acoustic parameters calculated after a filter-bank analysis of the recorded voice signals. Modelling results indicate that for breathiness and asthenia more than 55% of the variance of perceptual rates can be explained by such a model, with only 4 latent variables. Moreover, the greatest part of the explained variance can be attributed to only one or two latent variables similarly weighted by all 5 listeners involved in the experiment. Correlation factors between actual rates and model predictions around 0.6 are obtained.
Resumo:
El trabajo realizado en la presente tesis doctoral se debe considerar parte del proyecto UPMSat-2, que se enmarca dentro del ámbito de la tecnología aeroespacial. El UPMSat-2 es un microsatélite (de bajo coste y pequeño tamaño) diseñado, construido, probado e integrado por la Universidad Politécnica de Madrid (España), para fines de demostración tecnológica y educación. El objetivo de la presente tesis doctoral es presentar nuevos modelos analíticos para estudiar la interdependencia energética entre los subsistemas de potencia y de control de actitud de un satélite. En primer lugar, se estudia la simulación del subsistema de potencia de un microsatélite, prestando especial atención a la simulación de la fuente de potencia, esto es, los paneles solares. En la tesis se presentan métodos sencillos pero precisos para simular la producción de energía de los paneles en condiciones ambientales variables a través de su circuito equivalente. Los métodos propuestos para el cálculo de los parámetros del circuito equivalente son explícitos (o al menos, con las variables desacopladas), no iterativos y directos; no se necesitan iteraciones o valores iniciales para calcular los parámetros. La precisión de este método se prueba y se compara con métodos similares de la literatura disponible, demostrando una precisión similar para mayor simplicidad. En segundo lugar, se presenta la simulación del subsistema de control de actitud de un microsatélite, prestando especial atención a la nueva ley de control propuesta. La tesis presenta un nuevo tipo de control magnético es aplicable a la órbita baja terrestre (LEO). La ley de control propuesta es capaz de ajustar la velocidad de rotación del satélite alrededor de su eje principal de inercia máximo o mínimo. Además, en el caso de órbitas de alta inclinación, la ley de control favorece la alineación del eje de rotación con la dirección normal al plano orbital. El algoritmo de control propuesto es simple, sólo se requieren magnetopares como actuadores; sólo se requieren magnetómetros como sensores; no hace falta estimar la velocidad angular; no incluye un modelo de campo magnético de la Tierra; no tiene por qué ser externamente activado con información sobre las características orbitales y permite el rearme automático después de un apagado total del subsistema de control de actitud. La viabilidad teórica de la citada ley de control se demuestra a través de análisis de Monte Carlo. Por último, en términos de producción de energía, se demuestra que la actitud propuesto (en eje principal perpendicular al plano de la órbita, y el satélite que gira alrededor de ella con una velocidad controlada) es muy adecuado para la misión UPMSat-2, ya que permite una área superior de los paneles apuntando hacia el sol cuando se compara con otras actitudes estudiadas. En comparación con el control de actitud anterior propuesto para el UPMSat-2 resulta en un incremento de 25% en la potencia disponible. Además, la actitud propuesto mostró mejoras significativas, en comparación con otros, en términos de control térmico, como la tasa de rotación angular por satélite puede seleccionarse para conseguir una homogeneización de la temperatura más alta que apunta satélite y la antena. ABSTRACT The work carried out in the present doctoral dissertation should be considered part of the UPMSat-2 project, falling within the scope of the aerospace technology. The UPMSat-2 is a microsatellite (low cost and small size) designed, constructed integrated and tested for educational and technology demonstration purposes at the Universidad Politécnica de Madrid (Spain). The aim of the present doctoral dissertation is to present new analytical models to study the energy interdependence between the power and the attitude control subsystems of a satellite. First, the simulation of the power subsystem of a microsatellite is studied, paying particular attention to the simulation of the power supply, i.e. the solar panels. Simple but accurate methods for simulate the power production under variable ambient conditions using its equivalent circuit are presented. The proposed methods for calculate the equivalent circuit parameters are explicit (or at least, with decoupled variables), non-iterative and straight forward; no iterations or initial values for the parameters are needed. The accuracy of this method is tested and compared with similar methods from the available literature demonstrating similar precision but higher simplicity. Second, the simulation of the control subsystem of a microsatellite is presented, paying particular attention to the new control law proposed. A new type of magnetic control applied to Low Earth Orbit (LEO) satellites has been presented. The proposed control law is able to set the satellite rotation speed around its maximum or minimum inertia principal axis. Besides, the proposed control law favors the alignment of this axis with the normal direction to the orbital plane for high inclination orbits. The proposed control algorithm is simples, only magnetorquers are required as actuators; only magnetometers are required as sensors; no estimation of the angular velocity is needed; it does not include an in-orbit Earth magnetic field model; it does not need to be externally activated with information about the orbital characteristics and it allows automatic reset after a total shutdown of attitude control subsystem. The theoretical viability of the control law is demonstrated through Monte Carlo analysis. Finally, in terms of power production, it is demonstrated that the proposed attitude (on principal axis perpendicular to the orbit plane, and the satellite rotating around it with a controlled rate) is quite suitable for the UPMSat-2 mission, as it allows a higher area of the panels pointing towards the sun when compared to other studied attitudes. Compared with the previous attitude control proposed for the UPMSat-2 it results in a 25% increment in available power. Besides, the proposed attitude showed significant improvements, when compared to others, in terms of thermal control, as the satellite angular rotation rate can be selected to achieve a higher temperature homogenization of the satellite and antenna pointing.
Resumo:
Although it may sound reasonable that American education continues to be more effective at sending high school students to college, in a study conducted in 2009, The Council of the Great City Schools states that "slightly more than half of entering ninth grade students arrive performing below grade level in reading and math, while one in five entering ninth grade students is more than two years behind grade level...[and] 25% received support in the form of remedial literacy instruction or interventions" (Council of the Great City Schools, 2009). Students are distracted with technology (Lei & Zhao, 2005), family (Xu & Corno, 2003), medical illnesses (Nielson, 2009), learning disabilities and perhaps the most detrimental to academic success, the very lack of interest in school (Ruch, 1963). In a Johns Hopkins research study, Building a Graduation Nation - Colorado (Balfanz, 2008), warning signs were apparent years before the student dropped out of high school. The ninth grade was often referenced as a critical point that indicated success or failure to graduate high school. The research conducted by Johns Hopkins illustrates the problem: students who become disengaged from school have a much greater chance of dropping out of high school and not graduating. The first purpose of this study was to compare different measurement models of the Student School Engagement (SSE) using Factor Analysis to verify model fit with student engagement. The second purpose was to determine the extent to which the SSE instrument measures student school engagement by investigating convergent validity (via the SSE and Appleton, Christenson, Kim and Reschly's instrument and Fredricks, Blumenfeld, Friedel and Paris's instrument), discriminant validity (via Huebner's Student Life Satisfaction Survey) and criterion-related validity (via the sub-latent variables of Aspirations, Belonging and Productivity and student outcome measures such as achievement, attendance and discipline). Discriminant validity was established between the SSE and the Appleton, Christenson, Kim and Reschly's model and Fredricks, Blumenfeld, Friedel and Paris's (2005) Student Engagement Instruments (SEI). When confirming discriminant validity, the SSE's correlations were weak and statistically not significant, thus establishing discriminant validity with the SLSS. Criterion-related validity was established through structural equation modeling when the SSE was found to be a significant predictor of student outcome measures when both risk score and CSAP scores were used. The third purpose of this study was to assess the factorial invariance of the SSE instrument across gender to ensure the instrument is measuring the intended construct across different groups. Conclusively, configural, weak and metric invariances were established for the SSE as a non-significant change in chi-square indicating that all parameters including the error variances were invariant across groups of gender. Engagement is not a clearly defined psychological construct; it requires more research in order to fully comprehend its complexity. Hopefully, with parental and teacher involvement and a sense of community, student engagement can be nurtured to result in a meaningful attachment to school and academic success.