996 resultados para epsilon-Neodymium
Resumo:
The synthesis and catalytic activity of lanthanide monoamido complexes supported by a beta-diketiminate ligand are described. Donor solvents, such as DME, can cleave the chloro bridges of the dinuclear beta-diketiminate ytterbium dichloride {[(DIPPh)(2)nacnac]YbCl(mu-Cl)(3)Yb[(DIPPh)(2)nacnac](THF)} (1) [(DIPPh)(2)nacnac = N,N-diisopropylphenyl-2,4-pentanediimine anion] to produce the monomeric complex [(DIPPh)(2)nacnac]YbCl2(DME) (2) in high isolated yield. Complex 2 is a useful precursor for the synthesis of beta-diketiminate-ytterbium monoamido derivatives. Reaction of complex 2 with 1 equiv of LiNPr2i in THF at room temperature, after crystallization in THF/toluene mixed solvent, gave the anionic beta-diketiminate-ytterbium amido complex [(DIPPh)(2)nacnac]Yb(NPr2i)(mu-Cl)(2)Li(THF)(2) (3), while similar reaction of complex 2 with LiNPh2 produced the neutral complex [(DIPPh)(2)nacnac]Yb(NPh2)Cl(THF) (4). Recrystallization of complex 3 from toluene solution at elevated temperature led to the neutral beta-diketiminate-lanthanide amido complex [{(DIPPh)(2)nacnac}Yb(NPr2i)(mu-Cl)](2) (5). The reaction medium has a significant effect on the outcome of the reaction.
Resumo:
The crystallization behaviors of the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer with the PEG weight fraction of 0.50 (PEG(50)-PCL50) was studied by DSC, WAXD, SAXS, and FTIR. A superposed melting point at 58.5 degrees C and a superposed crystallization temperature at 35.4 degrees C were obtained from the DSC profiles running at 10 degrees C/min, whereas the temperature-dependent FTIR measurements during cooling from the melt at 0.2 degrees C/min showed that the PCL crystals formed starting at 48 degrees C while the PEG crystals started at 45 degrees C. The PEG and PCL blocks of the copolymer crystallized separately and formed alternating lamella regions according to the WAXD and SAXS results. The crystal growth of the diblock copolymer was observed by polarized optical microscope (POM). An interesting morphology of the concentric spherulites developed through a unique crystallization behavior. The concentric spherulites were analyzed by in situ microbeam FTIR, and it was determined that the morphologies of the inner and outer portions were mainly determined by the PCL and PEG spherulites, respectively. However, the compositions of the inner and outer portions were equal in the analysis by microbeam FTIR.
Resumo:
The crystallization behavior and morphology of the crystalline-crystalline poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer (PEO-b-PCL) was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), and hot-stage polarized optical microscope (POM). The mutual effects between the PEO and PCL blocks were significant, leading to the obvious composition dependence of the crystallization behavior and morphology of PEO-b-PCL. In this study, the PEO block length was fixed (M-n = 5000) and the weight ratio of PCL/PEO was tailored by changing the PCL block length. Both blocks could crystallize in PEO-b-PCL with the PCL weight fraction (WFPCL) of 0.23-0.87. For the sample with the WFPCL of 0.36 or less, the PEO block crystallized first, resulting in the obvious confinement of the PCL block and vice versa for the sample with WFPCL of 0.43 or more. With increasing WFPCL, the crystallinity of PEO reduced continuously while the variation of the PCL crystallinity exhibited a maximum. The long period of PEO-b-PCL increased with increasing WFPCL from 0.16 to 0.50 but then decreased with the further increase of WFPCL due to the interaction of the respective variation of the thicknesses of the PEO and PCL crystalline lamellae.
Resumo:
A facile soft chemical approach using cetyltrimethylammoniurn bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)(3) nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.
Resumo:
Neodymium-cerium oxide (Nd2Ce2O7) was proposed as a new thermal barrier coating material in this work. Monolithic Nd2Ce2O7 powder was prepared by the solid-state reaction at 1400 degrees C. The phase composition, thermal stability and thermophysical properties of Nd2Ce2O7 were investigated. Nd2Ce2O7 with fluorite structure was thermally stable in the temperature range of interest for TBC applications. The results indicated that the thermal expansion coefficient (TEC) of Nd2Ce2O7 was higher than that of YSZ (6-8 Wt-% Y2O3 + ZrO2) and even more interesting was the TEC change as a function of temperature paralleling that of the superalloy bond coat. Moreover, the thermal conductivity of Nd2Ce2O7 is 30% lower than that of YSZ, which was discussed based on the theory of heat conduction. Thermal barrier coating of Nd2Ce2O7 was produced by atmospheric plasma spraying (APS) using the spray-dried powder. The thermal cycling was performed with a gas burner test facility to examine the thermal stability of the as-prepared coating.
Resumo:
Rare earth oxide, neodymium oxide (Nd2O3), CO-catalyzed melt grafting of maleic anhydride (MAH) onto co-polypropylene (co-PP) in the presence of dicumyl peroxide (DCP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 as a coagent leads to an enhancement in both MFR and the grafting degree of MAH, along with a simultaneous decrease in the gel content. When the Nd2O3 concentration is 6.0 mmol%, the increment of the grafting degree of MAH maximally is up to about 20% compared with the related system without adding Nd2O3, and the gel content decreases simultaneously to a very low level of about 3%. Attenuated total reflection FTIR (ATR-FTIR) indicates that the gel in the graft copolymers mainly arise from the cross-linking reaction between ethylene units of co-PP. A reasonable reaction mechanism has been put forward on the basis of our experimental results and other mechanisms reported in the literature. We also tentatively explain above results by means of synergistic effect between DCP and Nd2O3, which causes a higher concentration of the macroradical, in particular the tertiary macroradical.
Resumo:
The quasiliving characteristics of the ringopening polymerization of epsilon-caprolactone (CL) catalyzed by an organic amino calcium were demonstrated. Taking advantage of this feature, we synthesized a series of poly (F-caprolactone) (PCL)-poly(L-lactide) (PLA) cliblock copolymers with the sequential addition of the monomers CL and L-lactide. The block structure was confirmed by H-1-NMR, C-13-NMR, and gel permeation chromatography analysis. The crystalline structure of the copolymers was investigated by differential scanning calorimetry and wide-angle X-ray diffraction analysis. When the molecular weight of the PLA block was high enough, phase separation took place in the block copolymer to form PCL and PLA domains, respectively.
Resumo:
Rare earth oxide, neodymium oxide (Nd2O3), -assisted melt free-radical grafting of maleic anhydride (MAH) on isotactic-polypropylene (i-PP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 into reactive system leads to an enhancement of the grafting degree of MAH, along with an elevated degradation of i-PP matrix. When Nd2O3 content is 4.5 mmol %, the increment of the grafting degree of MAH (maximally) is up to about 30% compared with that of the related system without adding Nd2O3, while the severest degradation of i-PP matrix simultaneously occurs. On the basis of the reaction mechanism of PP-g-MAH proposed before, the sequence of beta-scission and grafting reaction is discussed in detail. It is found that, for the reactive system studied, most tertiary macroradicals first undergo beta-scission, and then, grafting reaction with MAH takes place at the new radical chain ends. The imported Nd2O3 has no effect on the aforementioned reaction mechanism, whereas it enhances the initiating efficiency of the initiator, dicumyl peroxide (DCP).
Resumo:
The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.
Resumo:
The surface morphology and crystallization behavior of a weakly segregated symmetric diblock copolymer, poly(styrene-b-6-caprolactone) (PS-b-PCL), in thin films were investigated by optical microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). When the samples were annealed in the molten state, surface-induced ordering, that is, relief structures with uniform thickness or droplets in the adsorbed monolayer, were observed depending on the annealing temperature. The polar PCL block preferred to wet the surface of a silicon wafer, while the PS block wet the air interface. This asymmetric wetting behavior led to the adsorbed monolayer with a PCL block layer having a thickness of around 4.0 nm. The crystallization of PCL blocks could overwhelm the microphase-separated structure because of the weak segregation. In situ observation of crystal growth indicated that the nucleation process preferred to occur at the edge of the thick parts of the film, that is, the relief structures or droplets. The crystal growth rate was presented by the time dependence of the distance between the tip of crystal clusters and the edge. At 22 and 17 degreesC, the average crystal growth rates were 55 +/- 10 and 18 +/- 4 nm/min, respectively.
Resumo:
The copolymerizations of carbon dioxide (CO2) and propylene oxide (PO) were performed using new ternary rare-earth catalyst, It was found that the rare-earth coordination catalyst consisting of Nd(CCl3COO)(3), ZnEt2 and glycerine was very effective for the copolymerization of PO with CO2. The effects of the relative molar ratio and addition order of the catalyst components, copolymerization reaction time, and operating pressure as well as temperature on the copolymerization were systematically investigated. At an appropriate combination of all variables, the yield could be as high as 6875 g/mol Nd per hour at 90 degreesC in a 8 h reaction period.
Resumo:
Poly (6-caprolactone) (PCL) and poly (L-lactide) (PLA) were prepared by ring-opening Polymerization catalyzed by organic amino calcium catalysts (Ca/PO and Ca/EO) which were prepared by reacting calcium ammoniate Ca(NH3)(6) with propylene oxide and ethylene oxide, respectively. The catalysts exhibited high activity and the ring-opening polymerization behaved a quasi-living characteristic. Based on the Fr-IR spectra and the calcium contents of the catalysts, and based on the H-1 NMR end-group analysis of the low molecular weight PCL prepared using catalysts Ca/PO and Ca/EO, it was proposed that the catalysts have the structure of NH2-Ca-O-CH(CH3)(2) and NH2-CaO-CH2CH3 for Ca/PO and Ca/EO, respectively. The ring-opening polymerization of CL and LA follows a coordination-insertion mechanism and the active site is the Ca-O bond.
Resumo:
A new ionic conductor La2-xNdxMo2O9 (x=0.0-2.0) has been synthesized by wet-chemistry method. The precursors and the resultant oxide powders were characterized by DTA/TG, DSC, XRD and XPS techniques. Effect of substituting Nd for La reveals that the phase transition which occurs in La2Mo2O9 around 565degreesC disappears when x>0.2. And the maximum amount of Nd stabilized the high temperature phase of beta-La2Mo2O9 from cubic to tetragonal is about x=1.6. The measurements of impedance spectroscopy indicate that the ionic conductivity becomes considerably higher in comparison to that of La2Mo2O9.
Resumo:
A biodegradable two block copolymer, poly(epsilon-caprolactone)-b- poly(gamma-benzyl-L-glutamic acid) (PCL-PBLG) was synthesized successfully by ring-opening polymerization of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with aminophenyl-terminated PCL as a macroinitiator. The aminophenethoxyl-terminated PCL was prepared via hydrogenation of a 4-nitrophenethoxyl-teminated PCL, which was novelly obtained from the polymerization of c-caprolactone (CL) initiated by amino calcium 4-nitrobenzoxide. The structures of the block copolymer and its precursors from the initial step of PCL were confirmed and investigated by H-1 NMR, FT-IR, GPC, and FT-ICRMS analyses and DSC measurements.
Resumo:
Extraction and interfacial kinetics of Nd3+ and Sm3+ with HER/EHP-kerosene in a hollow fiber membrane extractor were studied. The results show that the extraction reactions in the hollow fiber membrane extractor are the same as those in the liquid-liquid extraction, which can be expressed as a quasi-first-order reaction. The effect of acidity in aqueous phase, concentrations of extractant, Nd3+ and Sm3+ on extraction rate were discussed and the corresponding reaction series were obtained. The reaction equations, reaction rate constants and the separation constant were obtained.