947 resultados para electrical conductivity of poly(p-phenylene sulfide)
Studies on the structural, electrical and magnetic properties of composites based on spinel ferrites
Resumo:
This thesis mainly deals with the preparation and studies on magnetic composites based on spinel ferrites prepared both chemically and mechanically. Rubber ferrite composites (RFC) are chosen because of their mouldability and flexibility and the ease with which the dielectric and magnetic properties can be manipulated to make them as useful devices. Natural rubber is chosen as the Matrix because of its local availability and possible value addition. Moreover, NR represents a typical unsaturated nonpolar matrix. The work can be thought of as two parts. Part l concentrates on the preparation and characterization of nanocomposites based on y-Fe203. Part 2 deals with the preparation and characterization of RFCs containing Nickel zinc ferrit In the present study magnetic nanocomposites have been prepared by ionexchange method and the preparation conditions have been optimized. The insitu incorporation of the magnetic component is carried out chemically. This method is selected as it is the easiest and simplest method for preparation of nanocomposite. Nanocomposite samples thus prepared were studied using VSM, Mossbauer spectroscopy, Iron content estimation, and ESR spectroscopy. For the preparation of RFCs, the filler material namely nickel zinc ferrite having the general formula Ni)_xZnxFez04, where x varies from 0 to 1 in steps of 0.2 have been prepared by the conventional ceramic techniques. The system of Nil_xZn"Fe204 is chosen because of their excellent high frequency characteristics. After characterization they are incorporated into the polymer matrix of natural rubber by mechanical method. The incorporation is done according to a specific recipe and for various Loadings of magnetic fillers and also for all compositions. The cure characteristics, magnetic properties and dielectric properties of these composites are evaluated. The ac electrical conductivity of both ceramic nickel zinc ferrites and rubber ferrite composites are also calculated using a simple relation. The results are correlated.
Resumo:
Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected in situ. The structural properties of these films were evaluated by FTIR spectroscopy and the optical band gap was estimated from UV-vis-NIR measurements. Comparative studies on the structural, optical and electrical properties of a.c. and rf polymerization are presented here. It has been found that the optical band gap of the polyaniline thin films prepared by rf and a.c. plasma polymerization techniques differ considerably and the band gap is further reduced by in situ doping of iodine. The electrical conductivity measurements on these films show a higher value of electrical conductivity in the case of rf plasma polymerized thin films when compared to the a.c. plasma polymerized films. Also, it is found that the iodine doping enhanced conductivity of the polymer thin films considerably. The results are compared and correlated and have been explained with respect to the different structures adopted under these two preparation techniques
Resumo:
The effect of frequency, composition and temperature on the a.c. electrical conductivity were studied for the ceramic, Ni1–xZnxFe2O4, as well as the filler (Ni1–xZnxFe2O4) incorporated rubber ferrite composites (RFCs). Ni1–xZnxFe2O4 (where x varies from 0 to 1 in steps of 0×2) were prepared by usual ceramic techniques. They were then incorporated into a butyl rubber matrix according to a specific recipe. The a.c. electrical conductivity (sa.c.) calculations were carried out by using the data available from dielectric measurements and by employing a simple relationship. The a.c. conductivity values were found to be of the order of 10–3 S/m. Analysis of the results shows that sa.c. increases with increase of frequency and the change is same for both ceramic Ni1–xZnxFe2O4 and RFCs. sa.c. increases initially with the increase of zinc content and then decreases with increase of zinc. Same behaviour is observed for RFCs too. The dependence of sa.c. on the volume fraction of the magnetic filler was also studied and it was found that the a.c. conductivity of RFCs increases with increase of volume fraction of the magnetic filler. Temperature dependence of conductivity was studied for both ceramic and rubber ferrite composites. Conductivity shows a linear dependence with temperature in the case of ceramic samples
Resumo:
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values
Resumo:
The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field-dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6-311 + G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively
Resumo:
Reaction Injection Moulding (RIM) is a moulding technology used for the production of large size and complex plastic parts. The RIM process is characterized essentially by the injection of a highly reactive chemical system (usually polyurethane) and fast cure, in a mould properly closed and thermally controlled. Several studies show that rapid manufacturing moulds obtained in epoxy resins for Thermoplastic Injection Moulding (TIM) affect the moulding process and the final properties of parts. The cycle time and mechanical properties of final parts are reduced, due to a low thermal conductivity of epoxy materials. In contrast, the low conductivity of materials usually applied for the rapid manufacturing of RIM moulds, increase the mechanical properties of final injected parts and reduce the cycle time. This study shows the effect of the rapid manufacturing moulds material during the RIM process. Several materials have been tested for rapid manufacturing of RIM moulds and the analysis of both, temperature profile of moulded parts during injection and the cure data experimentally obtained in a mixing and reaction cell, allow to determine and model the real effect of the mould material on the RIM process.
Resumo:
The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol < ethanol < isopropanol < dioxane. The multilayered coatings were developed using layer-by-layer deposition of interpolymer complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.
Resumo:
Two types of poly(epsilon-caprolactone (CLo)-co-poly(epsilon-caprolactam (CLa)) copolymers were prepared by catalyzed hydrolytic ring-opening polymerization. Both cyclic comonomers were added simultaneously in the reaction medium for the First type or materials where copolymers have a random distribution of counits, as evidenced by H-1 and C-13 NMR. For the second type of copolymers, the cyclic comonomers were added sequentially, yielding diblock poly(ester-amides). The materials were characterized by differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS), and transmission and scanning electron microscopies (TEM and SEM). Their biodegradation in compost was also studied. All copolymers were found to be miscible by the absence of structure in the melt. TEM revealed that all samples exhibited a crystalline lamellar morphology. DSC and WAXS showed that in a wide composition range (CLo contents from 6 to 55%) only the CLa units were capable of crystallization in the random copolymers. The block copolymer samples only experience a small reduction of crystallization and melting temperature with composition, and this was attributed to a dilution effect caused by the miscible noncrystalline CLo units. The comparison between block and random copolymers provided a unique opportunity to distinguish the dilution effect of the CLo units on the crystallization and melting of the polyamide phase from the chemical composition effect in the random copolymers case, where the CLa sequences are interrupted statistically by the CLo units, making the crystallization of the polyamide strongly composition dependent. Finally, the enzymatic degradation of the copolymers in composted soil indicate a synergistic behavior where much faster degradation was obtained for random copolymers witha CLo content larger than 30% than for neat PCL.
Resumo:
Elongated crystalline particles formed as by-products during poly(arylene ether ketone) synthesis by electrophilic precipitation-polycondensation of 4,4'-diphenoxybenzophenone with terephthaloyl chloride or isophthaloyl chloride, thought previously to be polymer-whiskers, have now been identified as macrocyclic phases. Single crystal X-ray analysis of the needle-like particles formed in the reaction with terephthaloyl chloride, using the microdiffraction technique with synchrotron radiation, revealed that they consist of a macrocylic compound containing ten phenylene units, i.e. the [2 + 2] cyclic dimer. An analogous structure has also been demonstrated for the corresponding macrocycle derived from the reaction of 4,4-diphenoxybenzophenone with isophthaloyl chloride. Chloroform extraction of the products of the two polycondensations dissolved the macrocyclic material (but not the linear polymer), and analysis of the extracts by MALDI-TOF mass spectrometry demonstrated the presence in both cases of homologous families of macrocyclic products. Higher yields of macrocycles were obtained under pseudo-high dilution conditions, enabling the [2 + 2] cyclodimers from reactions of 4,4'-diphenoxybenzophenone with both terephthaloyl and isophthaloyl chloride to be isolated as pure compounds and fully characterised. (C) 2003 Published by Elsevier Ltd.
Resumo:
Insulating oils are a major component of high voltage plant, including transformers, switchgear and cables. Consequentially, in terms of plant failure, changes in the electrical characteristics of the oil during ageing are of crucial importance. To address this issue, commercial insulating oil was subjected to controlled ageing under laboratory conditions. The electrical properties of the aged oils were then characterized using dielectric spectroscopy. The data suggest that a degree of electrical conductivity occurs in the aged oils, which reduces the insulating properties of the oil as ageing proceeds. The role of atmosphere and additives on the electrical properties of the oils were also explored. Results are compared with model samples, which contain known amounts of materials that may occur as by-products of the ageing process.
Resumo:
The mechanisms of refractive index change in poly(methyl methacrylate) by frequency doubled femtosecond laser pulses are investigated. It is demonstrated that positive refractive index modificaton can be caused by a combination of depolymerization and crosslinking.
Resumo:
The thermal properties, crystallization, and morphology of amphiphilic poly(D-lactide)-b-poly(N,N-dimethylamino- 2-ethyl methacrylate) (PDLA-b-PDMAEMA) and poly (L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PLLA-b-PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA-b-PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk-shape structure and, for high molecular weight samples, the particles displayed unusual star-like shape morphology.