946 resultados para electric capacitance
Resumo:
A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.
Resumo:
The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.
Resumo:
The integration of Plug-in electric vehicles in the transportation sector has a great potential to reduce oil dependency, the GHG emissions and to contribute for the integration of renewable sources into the electricity generation mix. Portugal has a high share of wind energy, and curtailment may occur, especially during the off-peak hours with high levels of hydro generation. In this context, the electric vehicles, seen as a distributed storage system, can help to reduce the potential wind curtailments and, therefore, increase the integration of wind power into the power system. In order to assess the energy and environmental benefits of this integration, a methodology based on a unit commitment and economic dispatch is adapted and implemented. From this methodology, the thermal generation costs, the CO2 emissions and the potential wind generation curtailment are computed. Simulation results show that a 10% penetration of electric vehicles in the Portuguese fleet would increase electrical load by 3% and reduce wind curtailment by only 26%. This results from the fact that the additional generation required to supply the electric vehicles is mostly thermal. The computed CO2 emissions of the EV are 92 g CO2/kWh which become closer to those of some new ICE engines.
Resumo:
This paper presents the system developed to promote the rational use of electric energy among consumers and, thus, increase the energy efficiency. The goal is to provide energy consumers with an application that displays the energy consumption/production profiles, sets up consuming ceilings, defines automatic alerts and alarms, compares anonymously consumers with identical energy usage profiles by region and predicts, in the case of non-residential installations, the expected consumption/production values. The resulting distributed system is organized in two main blocks: front-end and back-end. The front-end includes user interface applications for Android mobile devices and Web browsers. The back-end provides data storage and processing functionalities and is installed in a cloud computing platform - the Google App Engine - which provides a standard Web service interface. This option ensures interoperability, scalability and robustness to the system.
Resumo:
The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Resumo:
The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment.
Resumo:
Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
Walter D’Arcy Ryan was born in 1870 in Kentville, Nova Scotia. He became the chief of the department of illumination at the General Electric Company of Schenectady, New York. He was a founder in the field of electrical illumination. He built the electric steam scintillator which had numerous nozzles and valves. The operator would release steam through the valves. The nozzles all had names which included: Niagara, fan, snake, plume, column, pinwheel and sunburst. The steam scintillator was combined with projectors, prismatic reflectors, flashers and filters to produce the desired effects. In 1920 a group of businessmen from Niagara Falls, New York formed a group who called themselves the “generators’. They lobbied the American and Canadian governments to improve the illumination of the Falls. They were able to raise $58, 000 for the purchase and installation of 24 arc lights to illuminate the Falls. On February 24th, 1925 the Niagara Falls Illumination Board was formed. Initially, the board had a budget of $28,000 for management, operation and maintenance of the lights. The power was supplied free by the Ontario Power Company. They had 24 lights installed in a row on the Ontario Power Company surge tank which was next to the Refectory in Victoria Park on the Canadian side. The official opening ceremony took place on June 8th, 1925 and included a light parade in Niagara Falls, New York and an international ceremony held in the middle of the Upper Steel Arch Bridge. Walter D’Arcy Ryan was the illuminating engineer and A.D. Dickerson who was his New York field assistant directed the scintillator. with information from American Technological Sublime by David E. Nye and the Niagara Falls info website Location: Brock University Archives Source Information: Subject Headings: Added Entries: 100 Ryan, W. D’A. |q (Walter D’Arcy), |d 1870-1934 610 General Electric Company 650 Lighting, Architectural and decorative 650 Lighting |z New York (State) |z Niagara Falls 700 Dickerson, A.F. 700 Schaffer, J.W. Related material held at other repositories: The Niagara Falls Museum in Niagara Falls, Ontario has a program (pamphlet) dedicating new lighting in 1958 and it has postcards depicting the illumination of the Falls. Some of Ryan’s accomplishments can be seen at The Virtual Museum of the City of San Francisco. Described by: Anne Adams Date: Sept 26,Upper Steel Arch Bridge. Walter D’Arcy Ryan was the illuminating engineer and A.D. Dickerson who was his New York field assistant directed the scintillator. with information from American Technological Sublime by David E. Nye and the Niagara Falls info website
Resumo:
Sir Adam Beck ( a London, Ontario manufacturer, Mayor and Conservative member of the provincial legislature) was a champion of municipal and provincial power ownership. Beck become the “Power Minister” and chairman of the Hydro-Electric Power Commission of Ontario which was the world’s first publicly owned utility. In 1925 the first unit of the Hydro Electric Power Commission’s Queenston Chippawa hydro-electric development on the Niagara River went into service. The station was renamed in 1950 as “Sir Adam Beck #1”. This marked the 25th anniversary of Beck’s death. This is one of 2 generating stations in Niagara Falls. There is also Adam Beck Plant #2. The Niagara generating stations supply one quarter of all power used in New York State and Ontario.Ontario Hydro has two water tunnels which traverse the entire City of Niagara Falls from the Village of Chippawa in the South to the Sir Adam Beck Hydro Electric Generating Stations in the North. Also they are in the process of building the third tunnel. In addition, Ontario Hydro has a 13.6 km open canal which traverses the entire City of Niagara Falls. Source: http://www.hydroone.com/OurCompany/Pages/OurHistory.aspx
Resumo:
A letter from 2nd Vice President and General Manager of Canadian General Electric Company, Frederic Nicholls to W. B. Rankine regarding a bid for contract. The letter mentions that the bid for two alternating generators for the Canadian side of Niagara Falls was won by Westinghouse Eletric and Manufacturing Co. Nicholls also mentions that there will be other opportunites to win contracts as more machines are required. Nicholls also implies that Westinghouse may have bid under cost in an effort to secure the first of many contracts with the Canadian Niagara Power Company.
Resumo:
Fourth Annual Report of The Electrical Development Company of Ontario Limited for for the year 1906. The report discusses the main line between Niagara Falls and Toronto and the line between the Township of Pelham and the city of Brantford. The report also details the purchase of stocks and bonds in several different companies.
Resumo:
The Public Ownership League of America Conference, September 10th to 13th, 1923, at Toronto, Ontario.