956 resultados para egg antigen
Resumo:
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.
Resumo:
Cumulative T-cell receptor signal strength and ensuing T-cell responses are affected by both antigen affinity and antigen dose. Here we examined the distinct contributions of these parameters to CD4 T-cell differentiation during infection. We found that high antigen affinity positively correlates with T helper (Th)1 differentiation at both high and low doses of antigen. In contrast, follicular helper T cell (TFH) effectors are generated after priming with high, intermediate, and low affinity ligand. Unexpectedly, memory T cells generated after priming with very low affinity antigen remain impaired in their ability to generate secondary Th1 effectors, despite being recalled with high affinity antigen. These data challenge the view that only strongly stimulated CD4 T cells are capable of differentiating into the TFH and memory T-cell compartments and reveal that differential strength of stimulation during primary T-cell activation imprints unique and long lasting T-cell differentiation programs.
Resumo:
If a mother's nutritional status predicts the nutritional environment of the offspring, it would be adaptive for mothers experiencing nutritional stress to prime their offspring for a better tolerance to poor nutrition. We report that in Drosophila melanogaster, parents raised on poor larval food laid 3-6% heavier eggs than parents raised on standard food, despite being 30 per cent smaller. Their offspring developed 14 h (4%) faster on the poor food than offspring of well-fed parents. However, they were slightly smaller as adults. Thus, the effects of parental diet on offspring performance under malnutrition apparently involve both adaptive plasticity and maladaptive effects of parental stress.
Resumo:
PURPOSE: Vaccination with full-length human tumor antigens aims at inducing or increasing antitumor immune responses, including CD8 CTL in cancer patients across the HLA barrier. We have recently reported that vaccination with a recombinant tumor-specific NY-ESO-1 (ESO) protein, administered with Montanide and CpG resulted in the induction of specific integrated antibody and CD4 T cell responses in all vaccinated patients examined, and significant CTL responses in half of them. Vaccine-induced CTL mostly recognized a single immunodominant region (ESO 81-110). The purpose of the present study was to identify genetic factor(s) distinguishing CTL responders from nonresponders. EXPERIMENTAL DESIGN: We determined the HLA class I alleles expressed by CTL responders and nonresponders using high-resolution molecular typing. Using short overlapping peptides spanning the ESO immunodominant CTL region and HLA class I/ESO peptide tetramers, we determined the epitopes recognized by the majority of vaccine-induced CTL. RESULTS: CTL induced by vaccination with ESO protein mostly recognized distinct but closely overlapping epitopes restricted by a few frequently expressed HLA-B35 and HLA-Cw3 alleles. All CTL responders expressed at least one of the identified alleles, whereas none of the nonresponders expressed them. CONCLUSIONS: Expression of HLA-B35 and HLA-Cw3 is associated with the induction of immunodominant CTL responses following vaccination with recombinant ESO protein. Because recombinant tumor-specific proteins are presently among the most promising candidate anticancer vaccines, our findings indicate that the monitoring of cancer vaccine trials should systematically include the assessment of HLA association with responsiveness.
Resumo:
Audit report on the Iowa Egg Council for the years ended June 30, 2014 and 2013
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.
Resumo:
We have determined high-resolution crystal structures of the complexes of HLA-A2 molecules with two modified immunodominant peptides from the melanoma tumor-associated protein Melan-A/Melanoma Ag recognized by T cells-1. The two peptides, a decamer and nonamer with overlapping sequences (ELAGIGILTV and ALGIGILTV), are modified in the second residue to increase their affinity for HLA-A2. The modified decamer is more immunogenic than the natural peptide and a candidate for peptide-based melanoma immunotherapy. The crystal structures at 1.8 and 2.15 A resolution define the differences in binding modes of the modified peptides, including different clusters of water molecules that appear to stabilize the peptide-HLA interaction. The structures suggest both how the wild-type peptides would bind and how three categories of cytotoxic T lymphocytes with differing fine specificity might recognize the two peptides.
Resumo:
Tumor antigen-specific cytotoxic T cells (CTLs) play a major role in the adaptive immune response to cancers. This CTL response is often insufficient because of functional impairment, tumor escape mechanisms, or inhibitory tumor microenvironment. However, little is known about the fate of given tumor-specific CTL clones in cancer patients. Studies in patients with favorable outcomes may be very informative. In this longitudinal study, we tracked, quantified, and characterized functionally defined antigen-specific T-cell clones ex vivo, in peripheral blood and at tumor sites, in two long-term melanoma survivors. MAGE-A10-specific CD8+ T-cell clones with high avidity to antigenic peptide and tumor lytic capabilities persisted in peripheral blood over more than 10 years, with quantitative variations correlating with the clinical course. These clones were also found in emerging metastases, and, in one patient, circulating clonal T cells displayed a fully differentiated effector phenotype at the time of relapse. Longevity, tumor homing, differentiation phenotype, and quantitative adaptation to the disease phases suggest the contribution of the tracked tumor-reactive clones in the tumor control of these long-term metastatic survivor patients. Focusing research on patients with favorable outcomes may help to identify parameters that are crucial for an efficient antitumor response and to optimize cancer immunotherapy.
Resumo:
We tested for antigen recognition and T cell receptor (TCR)-ligand binding 12 peptide derivative variants on seven H-2Kd-restricted cytotoxic T lymphocytes (CTL) clones specific for a bifunctional photoreactive derivative of the Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI). The derivative contained iodo-4-azidosalicylic acid in place of PbCS S-252 and 4-azidobenzoic acid on PbCS K-259. Selective photoactivation of the N-terminal photoreactive group allowed crosslinking to Kd molecules and photoactivation of the orthogonal group to TCR. TCR photoaffinity labeling with covalent Kd-peptide derivative complexes allowed direct assessment of TCR-ligand binding on living CTL. In most cases (over 80%) cytotoxicity (chromium release) and TCR-ligand binding differed by less than fivefold. The exceptions included (a) partial TCR agonists (8 cases), for which antigen recognition was five-tenfold less efficient than TCR-ligand binding, (b) TCR antagonists (2 cases), which were not recognized and capable of inhibiting recognition of the wild-type conjugate, (c) heteroclitic agonists (2 cases), for which antigen recognition was more efficient than TCR-ligand binding, and (d) one partial TCR agonist, which activated only Fas (C1)95), but not perforin/granzyme-mediated cytotoxicity. There was no correlation between these divergences and the avidity of TCR-ligand binding, indicating that other factors than binding avidity determine the nature of the CTL response. An unexpected and novel finding was that CD8-dependent clones clearly incline more to TCR antagonism than CD8-independent ones. As there was no correlation between CD8 dependence and the avidity of TCR-ligand binding, the possibility is suggested that CD8 plays a critical role in aberrant CTL function.
Resumo:
The objective of this work was to determine the potential of five species of Scelionidae wasps - Telenomus podisi, Trissolcus basalis, Trissolcus urichi, Trissolcus teretis and Trissolcus brochymenae - as natural enemies of the neotropical stink bug Dichelops melacanthus, and to determine if the presence of eggs of other stink bug species influences the parasitism and development of the parasitoids. Two kinds of experiments were done in laboratory: without choice of hosts (eggs of D. melacanthus) and with choice (eggs of D. melacanthus and of Euschistus heros). Biological parameters, including proportion of parasitism, immature survivorship, progeny sex ratio, immature stage development period, and host preference were recorded. All the evaluated parasitoids can parasitize and develop on D. melacanthus eggs. The first choice of eggs did not influence the proportion of D. melacanthus eggs parasitized by Tr. basalis, Tr. teretis or Tr. brochymenae. However, D. melacanthus eggs as the first choice of Te. podisi and Tr. urichi increased, respectively, 9 and 14 times the chance for parasitism on eggs of this species. Behavioral and ecological aspects of parasitoids should be considered prior to their use in biological control programs.
Resumo:
To evaluate the efficacy of endorectal Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spetroscopic Imaging (MRSI) combined with total prostate-specific antigen (tPSA) and free prostate-specific antigen (fPSA) in selecting candidates for biopsy. Subjects and Methods: 246 patients with elevated tPSA (median: 7.81 ng/ml) underwent endorectal MRI and MRSI before Transrectal Ultrasound (TRUS) biopsy (10 peripheral + 2 central cores); patients with positive biopsies were treated with radical intention; those with negative biopsies were followed up and underwent MRSI before each additional biopsy if tPSA rose persistently. Mean follow-up: 27.6 months. We compared MRI, MRSI, tPSA, and fPSA with histopathology by sextant and determined the association between the Gleason score and MRI and MRSI. We determined the most accurate combination to detect prostate cancer (PCa) using receiver operating curves; we estimated the odds ratios (OR) and calculated sensitivity, specificity, and positive and negative predictive values. Results: No difference in tPSA was found between patients with and without PCa (p = 0.551). In the peripheral zone, the risk of PCa increased with MRSI grade; patients with high-grade MRSI had the greatest risk of PCa over time (OR = 328.6); the model including MRI, MRSI, tPSA, and fPSA was more accurate (Area under Curve: AUC = 95.7%) than MRI alone (AUC = 85.1%) or fPSA alone (AUC = 78.1%), but not than MRSI alone (94.5%). In the transitional zone, the model was less accurate (AUC = 84.4%). The association (p = 0.005) between MRSI and Gleason score was significant in both zones. Conclusions: MRSI is useful in patients with elevated tPSA. High-grade MRSI lesions call for repeated biopsies. Men with negative MRSI may forgo further biopsies because a significantly high Gleason lesion is very unlikely
Resumo:
Modern cancer therapies should strive not only to eliminate malignant tissues but also to preserve healthy tissues and the patient's quality of life. Antigen-specific immunotherapy approaches are promising for either aspect since they are designed to only act against tissues expressing 1 or more specified tumour antigens. In order to develop successful vaccine and adoptive transfer protocols, longitudinal monitoring of cancer patients taking part in clinical trials is mandatory. Here, in vivo expansion of antigen-specific cells, as well as their ex vivo functional status represent important parameters to be analysed. To obtain results that most closely reflect the cells' in vivo status, functional assays must be carried out with as little in vitro culturing as possible. The present minireview discusses recent advances in these domains.
Resumo:
The T3 complex is known to be expressed on the cell surface of mature T cells together with either the alpha-beta heterodimeric T cell receptor (TCR) or the TCR gamma protein. In a number of immature T cell malignancies, however, T3 has been described exclusively in the cytoplasm. We have investigated five such T cell lines with cytoplasmic T3 and could demonstrate by biosynthetic labeling the presence of the alpha and beta chains of the TCR in the cytoplasm of two of them, CEM and Ichikawa. No surface TCR alpha-beta protein could be detected by staining with the WT31 antibody. These observations, therefore, argue against the concept that expression of the TCR alpha chain controls the surface expression of the T3/TCR complex. Interestingly, phorbol 12-myristate 13-acetate (PMA) induced cell surface expression of T3 protein in these two cell lines only. Moreover, on surface-iodinated CEM cells no association of T3 and TCR molecules could be demonstrated after treatment with PMA, and expression of TCR alpha and beta chains was limited to the cytoplasm. In Ichikawa cells, however, PMA induced surface expression of a mature T3/TCR complex. Our findings indicate that separate regulatory mechanisms may exist for the surface expression of the T3 proteins and for the assembly of the T3/TCR complex.
Resumo:
In an attempt to improve tumor targeting and tumor retention time of monoclonal antibodies (MAbs), we prepared biparatopic antibodies (BpAbs) having the capability of binding 2 different non-overlapping epitopes on the same target antigen molecule, namely, the carcinoembryonic antigen (CEA). Six BpAbs were constructed by coupling 2 different Fab' fragments from 4 different specific anti-CEA MAbs recognizing 4 CEA epitopes (Gold 1-4). Demonstration of the double paratopic binding of these antibodies for CEA was confirmed in vitro by inhibition radioimmunoassay and cross-inhibition analysis by surface plasmon resonance (SPR; BIACORE) technology. Using the latter technique, the affinity constants for CEA immobilized onto the sensor chip were found to range from 0.37 to 1.54 x 10(9) M(-1) for the 4 parental F(ab')2 fragments and from 1.88 to 10.14 x 10(9) M(-1) for the BpAbs, demonstrating the advantage of biparatopic binding over conventional F(ab')2 binding. The Ka improvement was particularly high for BpAb F6/35A7 and BpAb F6/B17 with a 9.5- and 8.1-fold increase, respectively, as compared with the parental F(ab')2. In vivo, the 6 BpAbs were compared with their 2 respective parental F(ab')2 by injection of 131I-BpAb/125I-F(ab')2 parental fragments into nude mice xenografted with the human colon carcinoma T380. Dissection 72 hr post-injection demonstrated that BpAb B17/CE25 and BpAb F6/B17 gave higher tumor uptake than that of their parental F(ab')2. This finding is particularly interesting for BpAb F6/B17, which compared favorably with the F6 F(ab')2, one of the best parental F(ab')2 fragments used in our study.
Resumo:
Immunotherapy of cancer is often performed with altered "analog" peptide Ags optimized for HLA class I binding, resulting in enhanced immunogenicity, but the induced T cell responses require further evaluation. Recently, we demonstrated fine specificity differences and enhanced recognition of naturally presented Ag by T cells after vaccination with natural Melan-A/MART-1 peptide, as compared with analog peptide. In this study, we compared the TCR primary structures of 1489 HLA-A*0201/Melan-A26-35-specific CD8 T cells derived from both cohorts of patients. Although a strong preference for TRAV12-2 segment usage was present in nearly all patients, usage of particular TRAJ gene segments and CDR3 composition differed slightly after vaccination with natural vs analog peptide. Moreover, TCR β-chain repertoires were broader after natural than analog peptide vaccination. In all patients, we observed a marked conservation of the CDR3β amino acid composition with recurrent sequences centered on a glycyl-leucyl/valyl/alanyl-glycyl motif. In contrast to viral-specific TCR repertoires, such "public" motifs were primarily expressed by nondominant T cell clonotypes, which contrasted with "private" CDR3β signatures frequently found in T cell clonotypes that dominated repertoires of individual patients. Interestingly, no differences in functional avidity were observed between public and private T cell clonotypes. Collectively, our data indicate that T cell repertoires generated against natural or analog Melan-A peptide exhibited slightly distinct but otherwise overlapping and structurally conserved TCR features, suggesting that the differences in binding affinity/avidity of TCRs toward pMHC observed in the two cohorts of patients are caused by subtle structural TCR variations.