999 resultados para effective spawning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fecundity in striped mullet (Mugil cephalus) from South Carolina correlated highly with length and weight, but not with age. Oocyte counts ranged from 4.47 × 105 to 2.52 × 106 in 1998 for fish ranging in size from 331 mm to 600 mm total length, 2.13 × 105to 3.89 × 106in 1999 for fish ranging in size from 332 mm to 588 mm total length, and 3.89 × 105 to 3.01 × 106 in 2000 for fish ranging in size from 325 mm to 592 mm total length. The striped mullet in this study had a high degree of variability in the size-at-age relation-ship; this variability was indicative of varied growth rates and compounded the errors in estimating fecundity at age. The stronger relationship of fecundity to fish size allowed a much better predictive model for potential fecundity in striped mullet. By comparing fecundity with other measures of reproductive activity, such as the gonadosomatic index, histological examination, and the measurement of mean oocyte diameters, we determined that none of these methods by themselves were adequate to determine the extent of reproductive development. Histological examinations and oocyte diameter measurements revealed that fecundity counts could be made once developing oocytes reached 0.400 μm or larger. Striped mullet are isochronal spawners; therefore fecundity estimates for this species are easier to determine because oocytes develop at approximately the same rate upon reaching 400 μm. This uniform development made oocytes that were to be spawned easier to count. When fecundity counts were used in conjunction with histological examination, oocyte diameter measurements, and gonadosomatic index, a more complete measure of reproductive potential and the timing of the spawning season was possible. In addition, it was determined that striped mullet that recruit into South Carolina estuaries spawn from October through April.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples of the commercially and recreationally important West Australian dhufish (Glaucosoma hebraicum) were obtained from the lower west coast of Australia by a variety of methods. Fish <300 mm TL were caught over flat, hard substrata and low-lying limestone reefs, whereas larger fish were caught over larger limestone and coral reef formations. Maximum total lengths, weights, and ages were 981 mm, 15.3 kg, and 39 years, respectively, for females and 1120 mm, 23.2 kg, and 41 years, respectively, for males. The von Bertalanffy growth curves for females and males were significantly different. The values for L∞, k, and t0 in the von Bertalanffy growth equations were 929 mm, 0.111/year, and –0.141 years, respectively, for females, and 1025 mm, 0.111/year, and –0.052 years, respectively, for males. Preliminary estimates of total mortality indicated that G. hebraicum is now subjected to a level of fishing pressure that must be of concern to fishery managers. Glaucosoma hebraicum, which spawns between November and April and predominantly between December and March, breeds at a wide range of depths and is a multiple spawner. The L50’s for females and males at first maturity, i.e. 301 and 320 mm, respectively, were attained by about the end of the third year of life and are well below the minimum legal length (MLL) of 500 mm. Because females and males did not reach the MLL until the end of their seventh and sixth years of life, respectively, they would have had, on average, the opportunity of spawning during four and three spawning seasons, respectively, before they reached the MLL. However, because G. hebraicum caught in water depths >40 m typically die upon release, a MLL is of limited use for conserving this species. Alternative approaches, such as restricting fishing activity in highly fished areas, reducing daily bag limits for recreational fishermen, introducing quotas or revising specific details of certain commercial hand-line licences (or doing both) are more likely to provide effective conservation measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of our study was to understand the spatial and temporal variation in spawning and settlement of gray snapper (Lutjanus griseus) along the West Florida shelf (WFS). Juvenile gray snapper were collected over two consecutive years from seagrass meadows with a benthic scrape and otter trawl. Spawning, settlement, and growth patterns were compared across three sampling regions (Panhandle, Big bend, and Southwest) by using otolith microstructure. Histology of adult gonads was also used for an independent estimate of spawning time. Daily growth increments were visible in the lapilli of snapper 11–150 mm standard length; ages ranged from 38 to 229 days and estimated average planktonic larval duration was 25 days. Estimated growth rates ranged from 0.60 to 1.02 mm/d and did not differ among the three sampling regions, but did differ across sampling years. Back-calculated fertilization dates from otoliths indicated that juveniles in the Panhandle and Big Bend were mainly summer spawned fish, whereas Southwest juveniles had winter and summer fertilization dates. Settlement occurred during summer both years and in the winter of 1997 for the southern portion of the WFS. Moon phase did not appear to be strongly correlated with fertilization or settlement. Histological samples of gonads from adults collected near the juvenile sampling areas indicated a summer spawning period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of bias in female petrale sole age and length-at-maturity relationships caused by sampling from spawning aggregations was investigated. Samples were collected prior to aggregation, and histological methods were used to determine maturity status. Mature and immature fish were classified by inspecting oocytes for the presence of yolk in September, when substantial divergence in yolked and unyolked oocyte diameters had been observed. Comparison of macroscopic and microscopic assessment of maturity showed that maturity status cannot be determined accurately by using macroscopic inspection during the summer. Female petrale sole from the central Oregon coast were 50% mature at 33 cm and 5 years of age. Comparison of data from our study with data used in recent petrale sole stock assessments showed that both sampling bias and the use of samples from sea-sons when status cannot be accurately determined have likely caused errors in fitted maturity relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used allozyme, microsatellite, and mitochondrial DNA (mtDNA) data to test for spatial and interannual genetic diversity in wall-eye pollock (Theragra chalcogramma) from six spawning aggregations representing three geographic regions: Gulf of Alaska, eastern Bering Sea, and eastern Kamchatka. Interpopulation genetic diversity was evident primarily from the mtDNA and two allozyme loci (SOD-2*, MPI*). Permutation tests ˆindicated that FST values for most allozyme and microsatellite loci were not significantly greater than zero. The microsatellite results suggested that high locus polymorphism may not be a reliable indicator of power for detecting population differentiation in walleye pollock. The fact that mtDNA revealed population structure and most nuclear loci did not suggests that the effective size of most walleye pollock populations is large (genetic drift is weak) and migration is a relatively strong homogenizing force. The allozymes and mtDNA provided mostly concordant estimates of patterns of spatial genetic variation. These data showed significant genetic variation between North American and Asian populations. In addition, two spawning aggregations in the Gulf of Alaska, in Prince William Sound, and off Middleton Island, appeared genetically distinct from walleye pollock spawning in the Shelikof Strait and may merit management as a distinct stock. Finally, we found evidence of interannual genetic variation in two of three North American spawning aggregations, similar in magnitude to the spatial variation among North American walleye pol-lock. We suggest that interannual genetic variation in walleye pollock may be indicative of one or more of the following factors: highly variable reproductive success, adult philopatry, source-sink metapopulation structure, and intraannual variation (days) in spawning timing among genetically distinct but spatially identical spawning aggregates.