819 resultados para e-learning systems
Resumo:
NASA is working on complex future missions that require cooperation between multiple satellites or rovers. To implement these systems, developers are proposing and using intelligent and autonomous systems. These autonomous missions are new to NASA, and the software development community is just learning to develop such systems. With these new systems, new verification and validation techniques must be used. Current techniques have been developed based on large monolithic systems. These techniques have worked well and reliably, but do not translate to the new autonomous systems that are highly parallel and nondeterministic.
Resumo:
Pac-Man is a well-known, real-time computer game that provides an interesting platform for research. We describe an initial approach to developing an artificial agent that replaces the human to play a simplified version of Pac-Man. The agent is specified as a simple finite state machine and ruleset. with parameters that control the probability of movement by the agent given the constraints of the maze at some instant of time. In contrast to previous approaches, the agent represents a dynamic strategy for playing Pac-Man, rather than a pre-programmed maze-solving method. The agent adaptively "learns" through the application of population-based incremental learning (PBIL) to adjust the agents' parameters. Experimental results are presented that give insight into some of the complexities of the game, as well as highlighting the limitations and difficulties of the representation of the agent.
Resumo:
Increasingly, academic teachers are designing their own web sites to add value to or replace other forms of university teaching. These web sites are tangible and dynamic constructions that represent the teachers thinking and decisions derived from an implicit belief system about teaching and learning. The emphasis of this study is to explore the potential of the research techniques of concept-mapping and stimulated recall to locate the implicit pedagogies of academic teachers and investigate how they are enacted through the learning designs of their web sites. The rationale behind such an investigation is that once these implicit belief systems are made visible, then conversations can commence about how these beliefs are transformed into practice, providing a potent departure point for academic development.
Resumo:
In emergency situations, where time for blood transfusion is reduced, the O negative blood type (the universal donor) is administrated. However, sometimes even the universal donor can cause transfusion reactions that can be fatal to the patient. As commercial systems do not allow fast results and are not suitable for emergency situations, this paper presents the steps considered for the development and validation of a prototype, able to determine blood type compatibilities, even in emergency situations. Thus it is possible, using the developed system, to administer a compatible blood type, since the first blood unit transfused. In order to increase the system’s reliability, this prototype uses different approaches to classify blood types, the first of which is based on Decision Trees and the second one based on support vector machines. The features used to evaluate these classifiers are the standard deviation values, histogram, Histogram of Oriented Gradients and fast Fourier transform, computed on different regions of interest. The main characteristics of the presented prototype are small size, lightweight, easy transportation, ease of use, fast results, high reliability and low cost. These features are perfectly suited for emergency scenarios, where the prototype is expected to be used.
Resumo:
Automatic ontology building is a vital issue in many fields where they are currently built manually. This paper presents a user-centred methodology for ontology construction based on the use of Machine Learning and Natural Language Processing. In our approach, the user selects a corpus of texts and sketches a preliminary ontology (or selects an existing one) for a domain with a preliminary vocabulary associated to the elements in the ontology (lexicalisations). Examples of sentences involving such lexicalisation (e.g. ISA relation) in the corpus are automatically retrieved by the system. Retrieved examples are validated by the user and used by an adaptive Information Extraction system to generate patterns that discover other lexicalisations of the same objects in the ontology, possibly identifying new concepts or relations. New instances are added to the existing ontology or used to tune it. This process is repeated until a satisfactory ontology is obtained. The methodology largely automates the ontology construction process and the output is an ontology with an associated trained leaner to be used for further ontology modifications.
Resumo:
The performance of seven minimization algorithms are compared on five neural network problems. These include a variable-step-size algorithm, conjugate gradient, and several methods with explicit analytic or numerical approximations to the Hessian.