949 resultados para dual-wavelength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We point out the use of a wrong definition for conversion efficiency in the literature and analyze the effects of the waveguide length and pump power on conversion efficiency according to the correct definition. The existence of the locally optimal waveguide length and pump power is demonstrated theoretically and experimentally. Further analysis shows that the extremum of conversion efficiency can be achieved by global optimization of the waveguide length and pump power simultaneously, which is limited by just the linear propagation loss and the effective carrier lifetime. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavily iron-implanted silicon was prepared by mass-analyzed low-energy dual ion beam deposition technique. Auger electron spectroscopy depth profiles indicate that iron ions are shallowly implanted into the single-crystal silicon substrate and formed 35 nm thick FexSi films. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is partially restored after as-implanted sample was annealed at 400degreesC. There are no new phases formed. Carrier concentration depth profile of annealed sample was measured by Electrochemical C-V method and indicated that FexSi film shows n-type conductivity while silicon substrate is p-type. The p-n junction is formed between FexSi film and silicon substrate showing rectifying effect. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si1-xGex/Si optoelectronic devices are promising for the monolithic integration with silicon-based microelectronics. SiGe/Si MQW RCE-PD (Resonant-Cavity-Enhanced photodiodes) with different structures were investigated in this work. Design and fabrication of top- and bottom-incident RCE-PD, such as growth of SiGe MQW (Multiple Quantum Wells) on Si and SOI (Si on insulator) wafers, bonding between SiGe epitaxial wafer and SOR (Surface Optical Reflector) consisting Of SiO2/Si DBR (Distributed Bragg Reflector) films on Si, and performances of RCE-PD, were presented. The responsivity of 44mA/W at 1.314 mum and the FWHM of 6nm were obtained at bias of 10V. The highest external quantum efficiency measured in the investigation is 4.2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence from self-assembled long-wavelength InAs/GaAs quantum dots was investigated at 15 K under hydrostatic pressure up to 9 GPa. Photoemission from both the ground and the first excited states in large InAs dots was observed. The pressure coefficients of the two emissions were 69 and 72 meV/GPa, respectively. A nonlinear elasticity theory was used to interpret the significantly small pressure coefficients of the large dots. The sequential quenching of the ground and the excited state emissions with increasing pressure suggests that the excited state emissions originate from the optical transitions between the first excited electron states and the first excited hole states. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ridge distributed feedback laser monolithically integrated with a buried-ridge-stripe spot-size converter operating at 1.55 mu m was successfully fabricated by means of low-energy ion implantation quantum-well intermixing and dual-core technologies. The passive waveguide was optically combined with a laterally exponentially tapered active core to control the mode size. The devices emit in a single transverse and single longitudinal mode with a sidemode suppression ratio of 38.0 dB. The threshold current was 25 mA. The beam divergence angles in the horizontal and vertical directions were as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.0-dB coupling loss with a cleaved single-mode optical fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1.60-mu m laser diode and electroabsorption modulator monolithically integrated with a dual-waveguide spot-size converter output for low-loss coupling to cleaved single-mode optical fiber is demonstrated. The devices emit in a single transverse and quasi-single longitudinal mode with a side mode suppression ratio of 25.6 dB. These devices exhibit a 3-dB modulation bandwidth of 16.0 GHz, and modulator extinction ratios of 16.2 dB dc. The beam divergence angle is about 7.3x10.6 deg, resulting in 3.0-dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Society of Photo-optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated a 1.60 mu m ridge-structure laser diode and electroabsorption modulator monolithically integrated with buried-ridge-structure dual-waveguide spot-size converters at the input and output ports for low-loss coupling to a cleaved single-mode optical fibre by means of selective area growth and asymmetric twin waveguide technologies. The devices emit in single transverse and quasi-single longitudinal modes with a side mode suppression ratio of 25.6 dB. These devices exhibit 3 dB modulation bandwidth of 15.0 GHz and modulator extinction ratios of 14.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ridge laser diode monolithically integrated with a buried-ridge-structure dual-waveguide spot-size converter operating at 1.58 mu m is successfully fabricated by means of low-energy ion implantation quantum well intermixing and asymmetric twin waveguide technology. The passive waveguide is optically combined with a laterally tapered active core to control the mode size. The devices emit in a single transverse and quasi single longitudinal mode with a side mode suppression ratio of 40.0dB although no grating is fabricated in the LD region. The threshold current is 50 mA. The beam divergence angles in the horizontal and vertical directions are as small as 7.3 degrees x 18.0 degrees, respectively, resulting in 3.0dB coupling loss With a cleaved single-mode optical fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated a resonant-cavity-enhanced photodiode (RCE-PD) with InGaAs quantum dots (QDs) as an active medium. This sort of QD-embedded RCE-PD is capable of a peak external quantum efficiency of 32% and responsivity of 0.27A/W at 1.058 mu m with a full width at half maximum (FWHM) of 5 nm. Angle-resolved photocurrent response eventually proves that with the detection angle changing from 0 degrees to 60 degrees, the peak-current wavelength shifts towards the short wavelength side by 37 nm, while the quantum efficiency remains larger than 15%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed that the Mn ions were successfully implanted into GaSb substrate. Clear double-crystal X-ray diffraction patterns of the Ga1-xMnxSb samples indicate that the Ga1-xMnxSb epilayers have the zinc-blende structure without detectable second phase. Magnetic hysteresis-loop of the Ga1-xMnxSb epilayers were obtained at room temperature (293 K) with alternating gradient magnetometry. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple process for fabricating low-cost Si-based continuously tunable long-wavelength resonant-cavity-enhanced (RCE) photodetectors has been investigated. High-contrast SiO2/Si(Deltan similar to2) was employed as mirrors to eliminate the need to grow thick epitaxial distributed Bragg reflectors. Such high-reflectivity SiO2/Si mirrors were deposited on the as-grown InGaAs epitaxy layers, and then were bonded to silicon substrates at a low temperature of 350 C without any special treatment on bonding surfaces, employing silicate gel as the bonding medium. The cost is thus decreased. A thermally tunable Si-based InGaAs RCE photodetector operating at 1.3-1.6 mum was obtained, with a quantum efficiency of about 44% at the resonant wavelength of 1476 nm and a tuning range of 14.5 nm. It demonstrates a great potential for industry processes. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode gain spectrum is measured by the Fourier series expansion method for InAs/GaAs quantum-dot (QD) lasers with seven stacks of QDs at different injection currents. Gain spectra with distinctive peaks are observed at the short and long wavelengths of about 1210 nm and 1300 nm. For a QD laser with the cavity length of 1060 mu m, the peak gain of the long wavelength first increases slowly or even decreases with the injection current as the peak gain of the short wavelength increases quickly, and finally increases quickly before approaching the saturated values as the injection current further increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1.55-mu m single shallow ridge electroabsorptionmodulated distributed feedback laser that is monolithically integrated with a buried-ridge-stripe dual-core spot-size converter (SSC) at the input and output ports was fabricated by combining selective area growth, quantum-well intermixing, and dual-core integration techniques simultaneously. These devices exhibit a threshold current of 34 mA, a side mode suppression ratio of 38.0 dB, a 3-dB modulation bandwidth of 11.0 GHz, and a modulator extinction ratio of 25.0 dB dc. The output beam divergence angles of the SSC in the horizontal and vertical directions are as small as 7.3 degrees x 18 degrees, respectively, resulting in 3.2-dB coupling loss with a cleaved single-mode optical fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single shallow ridge electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-core spot-size converter at the input and output port was fabricated by combining quantum-well intermixing and dual-core integration techniques simultaneously, using only a two-step low-pressure metal-organic vapor phase epitaxial process, conventional photolithography, and a chemical wet etching process. The optical insertion loss of the modulator in the on-state and the dc extinction ratio between 0 and -3 V at 1550 nm was -7.5 and 16 dB, respectively. The 3-dB modulation bandwidth was more than 10.0 GHz in electrical-optical response.