902 resultados para distensão intestinal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver cirrhosis is associated with bacterial translocation (BT) and endotoxemia. Most translocating bacteria belong to the common intestinal microbiota, suggesting a breakdown of intestinal barrier function. We hypothesized that diminished mucosal antimicrobial host defense could predispose to BT. Two rodent models of portal hypertension with increased BT were used, CCl(4)-induced ascitic cirrhosis and 2-day portal vein-ligated (PVL) animals. BT was assessed by standard microbiological techniques on mesenteric lymph nodes. Total RNA was isolated systematically throughout the intestinal tract, and expression of Paneth cell α-cryptdins and β-defensins was determined by real-time quantitative polymerase chain reaction (qPCR). To determine functional consequences, mucosal antimicrobial activity was assessed with a fluorescence-activated cell sorting assay. BT was detectable in 40% of rats with cirrhosis. Compared with the group without BT, these animals exhibited diminished intestinal Paneth cell α-cryptdin 5 and 7 expression. In contrast, PVL was associated with BT in all animals but did not affect antimicrobial peptides. The decrease in Paneth cell antimicrobials was most pronounced in the ileum and the coecum. Other antimicrobials showed no changes or even an induction in the case of BT at different sites. Antimicrobial activity toward different commensal strains was reduced, especially in the distal ileum and the cecum in experimental cirrhosis with BT (excluding PVL). Conclusion: Compromised Paneth cell antimicrobial host defense seems to predispose to BT in experimental cirrhosis. Understanding this liver-gut axis including the underlying mechanisms could help us to find new treatment avenues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intestinal microbiota regulates key host functions. It is unknown whether modulation of the microbiota can affect a genetically determined host phenotype. Polymorphisms in the Nucleotide oligomerization domain (Nod)-like receptor family confer genetic risk for inflammatory bowel disease (IBD). We investigated whether the intestinal microbiota and the probiotic strain Bifidobacterium breve NCC2950 affect intestinal barrier function and responses to intestinal injury in Nod1(-/-); Nod2(-/-) mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coproscopic examination of 505 dogs originating from the western or central part of Switzerland revealed the presence (prevalence data) of the following helminthes: Toxocara canis (7.1%), hookworms (6.9%), Trichuris vulpis (5.5%), Toxascaris leonina (1.3%), Taeniidae (1.3%), Capillaria spp. (0.8%), and Diphyllobothrium latum (0.4%). Potential risk factors for infection were identified by a questionnaire: dogs from rural areas significantly more often had hookworms and taeniid eggs in their feces when compared to urban family dogs. Access to small rodents, offal, and carrion was identified as risk factor for hookworm and Taeniidae, while feeding of fresh and uncooked meat did not result in higher prevalences for these helminths. A group of 111 dogs was treated every 3 months with a combined medication of pyrantel embonate, praziquantel, and febantel, and fecal samples were collected for coproscopy in monthly intervals. Despite treatment, the yearly incidence of T. canis was 32%, while hookworms, T. vulpis, Capillaria spp., and Taeniidae reached incidences ranging from 11 to 22%. Fifty-seven percent of the 111 dogs had helminth eggs in their feces at least once during the 1-year study period. This finding implicates that an infection risk with potential zoonotic pathogens cannot be ruled out for the dog owner despite regular deworming four times a year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protozoan parasite Neospora caninum is one of the most important abortifacient organisms in cattle worldwide. The dog is known to act as definitive host although its potential role as infection source for bovines still remains unelucidated. The aim of the present study was to compile initial epidemiological data on the prevalence and incidence of N. caninum in Swiss dogs acting as definitive hosts. Thus, 249 Swiss dogs were investigated coproscopically in monthly intervals over a period of 1 year. A total of 3289 fecal samples was tested by the flotation technique. Among these, 202 were shown to contain Sarcocystis sp. (6.1%), 149 Cystoisospora sp. (=Isospora sp.; 4.5%) and 25 Hammondia/Neospora-like oocysts (HNlO) (0.7%). All but one sample containing HNlO were from different dogs; one dog shed HNlO at two subsequent time points. Calculation of the yearly incidence for HNlO resulted in the surprisingly high value of 9.2%. Farm dogs exhibited a higher incidence for HNlO than urban family dogs. Thirteen out of the 25 HNlO-samples showed sporulation after 5 days incubation at room temperature. HNlO were further differentiated by species-specific PCR. However, all HNlO-samples were negative for N. caninum, Hammondia heydorni and Toxoplasma gondii. One reason may be the low oocyst density found in most fecal samples, which did not permit us to carry out PCR under optimal conditions. Three out of the 25 HNlO-cases contained enough oocysts to allow further enrichment and purification by the flotation technique. Subsequently, twenty to fifty sporulated HNlO-oocysts were orally administered to Meriones unguiculatus. All gerbils were seronegative for N. caninum at 5 weeks p.i. A N. caninum-seroprevalence of 7.8% was determined by ELISA upon 1132 serum samples collected from dogs randomly selected by veterinarians among their clinical patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to assess the microcirculatory and metabolic consequences of reduced mesenteric blood flow. DESIGN: Prospective, controlled animal study. SETTING: The surgical research unit of a university hospital. SUBJECTS: A total of 13 anesthetized and mechanically ventilated pigs. INTERVENTIONS: Pigs were subjected to stepwise mesenteric blood flow reduction (15% in each step, n = 8) or served as controls (n = 5). Superior mesenteric arterial blood flow was measured with ultrasonic transit time flowmetry, and mucosal and muscularis microcirculatory perfusion in the small bowel were each measured with three laser Doppler flow probes. Small-bowel intramucosal Pco2 was measured by tonometry, and glucose, lactate (L), and pyruvate (P) were measured by microdialysis. MEASUREMENTS AND MAIN RESULTS: In control animals, superior mesenteric arterial blood flow, mucosal microcirculatory blood flow, intramucosal Pco2, and the lactate/pyruvate ratio remained unchanged. In both groups, mucosal blood flow was better preserved than muscularis blood flow. During stepwise mesenteric blood flow reduction, heterogeneous microcirculatory blood flow remained a prominent feature (coefficient of variation, approximately 45%). A 30% flow reduction from baseline was associated with a decrease in microdialysis glucose concentration from 2.37 (2.10-2.70) mmol/L to 0.57 (0.22-1.60) mmol/L (p < .05). After 75% flow reduction, the microdialysis lactate/pyruvate ratio increased from 8.6 (8.0-14.1) to 27.6 (15.5-37.4, p < .05), and arterial-intramucosal Pco2 gradients increased from 1.3 (0.4-3.5) kPa to 10.8 (8.0-16.0) kPa (p < .05). CONCLUSIONS: Blood flow redistribution and heterogeneous microcirculatory perfusion can explain apparently maintained regional oxidative metabolism during mesenteric hypoperfusion, despite local signs of anaerobic metabolism. Early decreasing glucose concentrations suggest that substrate supply may become crucial before oxygen consumption decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Galectins are involved at different stages in inflammation. Galectin-3, although mostly described as proinflammatory, can also act as an immunomodulator by inducing apoptosis in T cells. The present study aims to determine galectin-3 expression in the normal and inflamed intestinal mucosa and to define its role in T cell activity. MATERIALS AND METHODS: Galectin-3 was detected by quantitative polymerase chain reaction with total RNA from endoscopic biopsies and by immunohistochemistry. Biopsies and peripheral blood mononuclear cells (PBMC) were stimulated in vitro and were used to assess the functional consequences of inhibition or exogenous addition of galectin-3. RESULTS: Galectin-3 is expressed at comparable levels in controls and inflammatory bowel disease (IBD) patients in remission. In the normal mucosa, galectin-3 protein was mainly observed in differentiated enterocytes, preferentially at the basolateral side. However, galectin-3 was significantly downregulated in inflamed biopsies from IBD patients. Ex vivo stimulation of uninflamed biopsies with tumor necrosis factor led to similar galectin-3 messenger RNA downregulation as in vivo. When peripheral blood mononuclear cells (PBMC) were analyzed, galectin-3 was mainly produced by monocytes. Upon mitogen stimulation, we observed increased proliferation and decreased activation-induced cell death of peripheral blood T cells in the presence of galectin-3-specific small interfering RNA. In contrast, exogenous addition of recombinant galectin-3 led to reduced proliferation of mitogen-stimulated peripheral blood T cells. CONCLUSIONS: Our results suggest that downregulation of epithelial galectin-3 in the inflamed mucosa reflects a normal immunological consequence, whereas under noninflammatory conditions, its constitutive expression may help to prevent inappropriate immune responses against commensal bacteria or food compounds. Therefore, galectin-3 may prove valuable for manipulating disease activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent in humans the largest pool of tissue macrophages. To comply with their main task, i.e. the efficient removal of microbes and particulate matter that might have gained access to the mucosa from the intestinal lumen while maintaining local tissue homeostasis, several phenotypic and functional adaptations evolved. Most notably, microbe-associated molecular pattern (MAMP) receptors, including the lipopolysaccharide receptors CD14 and TLR4, but also the Fc receptors for IgA and IgG are absent on most intestinal Mø. Here we review recent findings on the phenotypic and functional adaptations of intestinal Mø and their implications for the pathogenesis of inflammatory bowel diseases.