946 resultados para depth of reasoning
Resumo:
The forage production in crop-livestock integration is critical both for formation of straw for no tillage planting and food for livestock farm. The experiment was conducted in the autumn/winter of 2009 and 2010, in the city of Selvíria -state of Mato Grosso do Sul -MS, Brazil, at Experimental Station of FEIS/UNESP. The objective was to evaluate the optimal depth for deposition of seeds of two Brachiaria species intercropped with corn with emphasis on grain yield and straw. The experimental design was a randomized block design in a factorial scheme 3 x 3, with four replications. The main treatments were two species of Brachiaria (Urochloa brizantha "Marandú" and Urochloa ruziziensis), which seeds were mixed with corn fertilizer and a control treatment (without intercropping). Secondary treatments consisted of three depths (8; 10 and 16 cm) in the deposition of fertilizer (in the consortium and the control treatments). The intercropping corn with Brachiaria produced similar amounts of straw. The straw total production was higher when intercropped and decreased with depth. The consortium with U. ruziziensis provided higher grain yield of corn in relation to U. brizantha, in 2010. The sowing depth of forages did not affect corn yield.
Resumo:
Irrigation with domestic sewage effluent (DSE) has been recommended by subsurface dripping, as it can obtain a high rate of irrigation efficiency and faster use of salts in comparison with other irrigation methods. The study aimed at evaluating the area, the length and the effective depth of the root system of sugarcane irrigated with DSE by subsurface drip system and with different irrigation rates at depths of 0.00-0.20, 0.20-0.40, 0.40-0.60 and 0.60-0.80m. The experiment was carried out in the municipality of Piracicaba, in the state of São Paulo (SP), Brazil, in a sugarcane area irrigated with DSE in a completely randomized blocks set up in furrows, with three replications and four treatments, which are: one area without irrigation (AWI) and three irrigated areas meeting 50% (T50%), 100% (T100%) and 200% (T200%) of the crop's water need between each round of irrigation. T100% and T200% provided smaller areas and lengths of roots in the two deepest layers, as compared to AWI and T50%, which stimulated the development of deeper roots due to the water stress. TWI, T100% and T200% presented 80% of the roots up to a depth of 0.40m and T50% treatment presented 76.43% of roots total.
Resumo:
The interaction between the soil and tillage tool can be examined using different parameters for the soil and the tool. Among the soil parameters are the shear stress, cohesion, internal friction angle of the soil and the pre-compression stress. The tool parameters are mainly the tool geometry and depth of operation. Regarding to the soils of Rio Grande do Sul there are hardly any studies and evaluations of the parameters that have importance in the use of mathematical models to predict tensile loads. The objective was to obtain parameters related to the soils of Rio Grande do Sul, which are used in soil-tool analysis, more specifically on mathematical models that allow the calculation of tractive effort for symmetric and narrow tools. Two of the main soils of Rio Grande do Sul, an Albaqualf and a Paleudult were studied. Equations that relate the cohesion, internal friction angle of the soil, adhesion, soil-tool friction angle and pre-compression stress as a function of water content in the soil were obtained, leading to important information for use of mathematical models for tractive effort calculation.
Resumo:
The wear resistance of rotary plows operating in a clay loam soil was studied. The degree of damage caused to the soil and the amount of mass lost by the tools were determined in order to establish correlations between the physical properties of the soil and the wear mechanisms acting on the tribosystem. Field tests were carried out in 12 plots and a randomized experimental design with 4 levels, 3 replicas per level and 2 passes per plot was applied. The levels relate to the tillage implements employed: rotary tiller, rotary power harrow, small motorized rotary tiller and control (unaltered soil). The highest mass losses were measured in rotary tiller and rotary power harrow's tools, while the small motorized rotary tiller's tools showed generally lower levels of damage. It was determined that the effective contact time between tool and soil, the rotating speed and the sudden impact forces are the most significant factors affecting the wear resistance in field operations. Thirty days after tillage operation the soil samples were taken from each plot at a mean depth of 100 mm in order to determine bulk density, gravimetric moisture content and percentage of aggregates smaller than 5 mm. No significant differences among the values of these properties were found in the experiments. The wear mechanisms acting on the tools' surface are complex and include 2-body and 3-body abrasion as well as the presence of sudden impact forces.
Resumo:
Irrigation is a practice widely used in fruit production in the Brazilian Northeast region, including in the papaya crop in order to increase their productivity. For the purpose of knowing the productive potential of papaya hybrid irrigated, an experiment was carried out in order to evaluate the performance of a papaya hybrid under different irrigations depths. Four irrigation depths (50, 75, 100 and 125% of ETo) were tested and the reference evapotranspiration was calculated by the Penman-Monteith model. The hybrid papaya used was UENF/Caliman 01, which was planted in single rows, spaced 4 x 2m from each other, and irrigated by dripping. The experimental design in randomized blocks was used with six replications and three plants per plot. The following variables were evaluated: transversal diameter, longitudinal diameter, pulp thickness, external and internal appearances, soluble solids, titratable acidity, pulp pH and soluble solids/titratable acidity relation. The higher transversal and longitudinal diameters of the fruit were obtained applying an irrigation depth of about 108% of evapotranspiration. The UENF/Caliman 01 hybrid can be cultivated in the semiarid region of the State of Paraiba, Brazil, with replacement rate of 100% ETo, without compromising the quality of the fruits.
Resumo:
The research aimed to quantify technical and economic indicators of yellow passion fruit tree irrigated with fractions of irrigation with underground source of water, to generate information that helps farmers in decision making on the implementation of investment in irrigated fruit growing (yellow passion fruit). For this purpose, we used the passion fruit crop irrigated with Microjet type irrigation system, with conducting system in simple espaliers. The treatments consisted of five hours of application of the depth of water required by the crop with irrigation frequency of two days. The results showed that the highest yield (16660kg ha-1) was obtained with the fractionation of irrigation twice a day (50% to 7h and 50% to 21h30), which provided an increase in productivity of 54%, demonstrating the financial viability and being highly profitable to the interest rate of 2% per year, with low sensitivity of financial risk to real interest rates above the prevailing market.
Resumo:
The search for the use of water with high levels of efficiency has motivated the use of drip irrigation in several agricultural systems. However, for the efficiency be ensured, it is necessary that the water distribution in the soil profile must to be known in more details. As it is a highly variable process, function of the local characteristics, is essential the study of each case. The objective of this research was evaluating the water distribution in the soil profile, from drippers installed in surface and 0.15 m below the soil surface. The experiment was realized in the Technical Center of Irrigation (TCI) of the State University of Maringá - PR. The water monitoring in the soil profile was done with TDR probes installed in a box containing sandy soil, at the depths from 0.05 to 0.80 m; and 0.05 to 0.35 m of lateral spacing, at intervals of 0.05 m, totalizing 30 probes. The treatments were differentiated in relation of the installation depth of the emitters (0.0 and 0.15 m) and flow (1, 2, 4, 6, and 8 L h-1). The irrigation time was 8 hours continuous with reading of the TDR probes each 30 minutes. The results allowed concluding that the wet area with the emitter positioned on the soil surface was directly proportional to the flow increase. For the underground dripper, this area was substantially smaller and the water losses by percolation were higher, mainly to the flows higher than 4 L h-1, which provided to unacceptable water losses that should be avoided.
Resumo:
The fatigue failure of structures under fluctuating loads in fillet weld joints raises a demand to determine the parameters related to this type of loading. In this study, the stress distribution in the susceptible area of weld toe and weld root in fillet welded models analyzed by finite element method applying FEMAP software. To avoid the geometrical singularity on the path of analytical stress analysis in the toe and root area of a weld model the effective notch stress approach applied by which a proper fictitious rounding that mostly depend on the material of structure is applied. The models with different weld toe waving width and radius are analyzed while the flank angle of weld varied in 45 and 30 degrees. The processed results shows that the waving compare to the straight weld toe makes differences in the value of stress and consequently the stress concentration factor between the tip and depth of the waves in the weld toe which helps to protect the crack of propagation and gives enough time and tools to be informed of the crack initiation in the structure during the periodical observation of structure. In the weld root study the analyses among the models with the welding penetration percentage from non-penetration to the full-penetration shows a slightly increase in the root area stress value which comparing with the stiffening effect of penetration conclude that the half-penetration can make an optimization between the stress increase and stiffening effect of deep penetration.
Resumo:
Formal methods provide a means of reasoning about computer programs in order to prove correctness criteria. One subtype of formal methods is based on the weakest precondition predicate transformer semantics and uses guarded commands as the basic modelling construct. Examples of such formalisms are Action Systems and Event-B. Guarded commands can intuitively be understood as actions that may be triggered when an associated guard condition holds. Guarded commands whose guards hold are nondeterministically chosen for execution, but no further control flow is present by default. Such a modelling approach is convenient for proving correctness, and the Refinement Calculus allows for a stepwise development method. It also has a parallel interpretation facilitating development of concurrent software, and it is suitable for describing event-driven scenarios. However, for many application areas, the execution paradigm traditionally used comprises more explicit control flow, which constitutes an obstacle for using the above mentioned formal methods. In this thesis, we study how guarded command based modelling approaches can be conveniently and efficiently scheduled in different scenarios. We first focus on the modelling of trust for transactions in a social networking setting. Due to the event-based nature of the scenario, the use of guarded commands turns out to be relatively straightforward. We continue by studying modelling of concurrent software, with particular focus on compute-intensive scenarios. We go from theoretical considerations to the feasibility of implementation by evaluating the performance and scalability of executing a case study model in parallel using automatic scheduling performed by a dedicated scheduler. Finally, we propose a more explicit and non-centralised approach in which the flow of each task is controlled by a schedule of its own. The schedules are expressed in a dedicated scheduling language, and patterns assist the developer in proving correctness of the scheduled model with respect to the original one.
Resumo:
This study investigated the surface hardening of steels via experimental tests using a multi-kilowatt fiber laser as the laser source. The influence of laser power and laser power density on the hardening effect was investigated. The microhardness analysis of various laser hardened steels was done. A thermodynamic model was developed to evaluate the thermal process of the surface treatment of a wide thin steel plate with a Gaussian laser beam. The effect of laser linear oscillation hardening (LLOS) of steel was examined. An as-rolled ferritic-pearlitic steel and a tempered martensitic steel with 0.37 wt% C content were hardened under various laser power levels and laser power densities. The optimum power density that produced the maximum hardness was found to be dependent on the laser power. The effect of laser power density on the produced hardness was revealed. The surface hardness, hardened depth and required laser power density were compared between the samples. Fiber laser was briefly compared with high power diode laser in hardening medium-carbon steel. Microhardness (HV0.01) test was done on seven different laser hardened steels, including rolled steel, quenched and tempered steel, soft annealed alloyed steel and conventionally through-hardened steel consisting of different carbon and alloy contents. The surface hardness and hardened depth were compared among the samples. The effect of grain size on surface hardness of ferritic-pearlitic steel and pearlitic-cementite steel was evaluated. In-grain indentation was done to measure the hardness of pearlitic and cementite structures. The macrohardness of the base material was found to be related to the microhardness of the softer phase structure. The measured microhardness values were compared with the conventional macrohardness (HV5) results. A thermodynamic model was developed to calculate the temperature cycle, Ac1 and Ac3 boundaries, homogenization time and cooling rate. The equations were numerically solved with an error of less than 10-8. The temperature distributions for various thicknesses were compared under different laser traverse speed. The lag of the was verified by experiments done on six different steels. The calculated thermal cycle and hardened depth were compared with measured data. Correction coefficients were applied to the model for AISI 4340 steel. AISI 4340 steel was hardened by laser linear oscillation hardening (LLOS). Equations were derived to calculate the overlapped width of adjacent tracks and the number of overlapped scans in the center of the scanned track. The effect of oscillation frequency on the hardened depth was investigated by microscopic evaluation and hardness measurement. The homogeneity of hardness and hardened depth with different processing parameters were investigated. The hardness profiles were compared with the results obtained with conventional single-track hardening. LLOS was proved to be well suitable for surface hardening in a relatively large rectangular area with considerable depth of hardening. Compared with conventional single-track scanning, LLOS produced notably smaller hardened depths while at 40 and 100 Hz LLOS resulted in higher hardness within a depth of about 0.6 mm.
Resumo:
The capuchin monkey is widespread both north and south of the Legal Amazon and in the Brazilian cerrado. Ten clinically healthy capuchin monkeys were submitted to an anatomical and radiographic study of their thoracic cavities. The radiographic evaluation allowed the description of biometric values associated with the cardiac silhouette and thoracic structures. Application of the VHS (vertebral heart size) method showed positive correlation (P<0.05) with depth of the thoracic cavity, as well as between the body length of vertebrae T3, T4, T5 and T6 and the cardiac length and width. The lung fields showed a diffuse interstitial pattern, more visible in the caudal lung lobes and a bronchial pattern in the middle and cranial lung lobes. The radiographic examination allowed preliminary inferences to be made concerning the syntopy of the thoracic structures and modification of the pulmonary patterns and cardiac anatomy for the capuchin monkey.
Resumo:
The agouti is a species intensively hunted throughout the Amazon and the semi-arid regions of northeastern Brazil. Considering the current trend in conservation management of wild species, the aim of this study was to determine the morphometric reference to the heart of agouti raised in captivity, based on thoracic and cardiac measurements in these animals. Thirty adult agoutis, 1 to 3 years of age, without clinical signs of cardiac disease were selected. The animals were physically restrained and radiographies in laterolateral (LL) and ventrodorsal (VD) recumbence were produced. The following measures were taken: the apicobasilar length of the heart (at the most cranial height of the Carina region to the heart apex) (AB), maximum width of the heart perpendicular to AB (CD), heart inclination angle (AIC), trachea inclination angle (AIT), distance from the right heart wall (DPTd), distance from the left heart wall (DPTe) and vertical depth of the thorax, and the ventral face of the vertebral column to the dorsal border of the sternum at the level of the trachea bifurcation (H). The ratios between AB/CD, AB/H and CD/H were also analyzed. To calculate the vertebral heart scale (VHS), the AB and CD measurements were laid over the thoracic vertebra starting at T4. Radiographic evaluation showed values consistent with those reported in small animals and some wild and exotic species. The main biometric values in the chest cavity and heart of agouti are arranged as follows: (1) The ratios between AB/H ratio and CD/H were not sensitive for identifying heart increases (p>0.05), while the ratio AB/CD was more sensitive in this identification (p<0.05); (2) AIC: 21.2±6.4º (mean between male and famale); (3) AIT for males and females: 9.93±3.23° and 8.4±3.94°; (4) DPTd and DPTe for males: 0.97±0.40cm and 0.7±0.30cm; (5) DPTd and DPTe for females: 1.12±0.42cm and 01.02±0.43cm; (6) VHS for males and females: 7.75±0.48v e 7.61±0.34v; (7) The caudal vena cava (CVC) was visualized dorsal-cranially and located right of the midline. The data obtained allowed the acquisition of the first reference values for biometry of the heart of agoutis, contributing to better understanding of cardiac morphology and identification of cardiomyopathy in these animals.
Resumo:
Understanding how weed seed germination and emergence respond to environmental factors is critical to determining their adaptive capabilities and potential for infestations, and could also aid in the development of effective control practices. Germination of Ipomoea asarifolia (Desr.) Roem. & Schultz and Stachytarpheta cayennensis (Rich) Vahl. decreased linearly with decreasing osmotic potentials. Also, increasing osmotic stress delayed germination of Ipomoea more than that of Stachytarpheta. Ipomoea germination was insensitive to light, while Stachytarpheta showed a positive photoblastic behavior. Nitrate had a negative effect on germination of Ipomoea seed under both light and dark conditions but stimulated dark germination of Stachytarpheta. Ipomoea emergence was not significantly affected by planting depth. However, for Stachytarpheta emergence was restrited to seeds planted at the soil surface. Emergence of Ipomoea seedlings from greater than 6cm significantly decreased the amount of biomass allocated to roots, while biomass allocated to leaves was decreased for seedlings that emerged from depths greater than 2cm. These germination and emergence responses are discussed in relation to their ecological implications and to weed control strategies.
Resumo:
Laboratory and greenhouse experiments were conducted to determine the effects of drought and salinity stress, temperature, pH and planting depth on yellow sweet clover (Melilotus officinalis) germination and emergence. Base, optimum and ceiling germination temperatures were estimated as 0, 18.47 and 34.60 ºC, respectively. Seed germination was sensitive to drought stress and completely inhibited at a potential of -1 MPa, but it was tolerant to salinity. Salinity stress up to 90 mM had no effect over the M. officinalis seed germination, but the germination decreased by increasing the salt concentration. The drought and salinity required for 50% inhibition of maximum germination were 207 mM and -0.49 MPa, respectively. High percentage of seed germination (>92%) was observed at pH = 5-6 and decreased to 80% at acidic medium (pH 4) and to 42% at alkaline medium (pH 9) pH. Maximum seedling emergence occurred when the seeds were placed at 2 cm depth and decreased when increasing the depth of planting; no seed emerged from depths of 10 cm.
Resumo:
Rhynchosia capitata is becoming an increasing problem in summer crops, such as cotton, soybean, pearl millet and mungbean in many Asian countries. Laboratory and greenhouse studies have been conducted to determine the effects of several environmental factors on seed germination patterns and seedling emergence of R. capitata. We investigated whether the diverse ecological factors such as temperature, light, salinity, moisture stress, pH, and soil depth affected germination and seedling emergence of R. capitata. Germination increased as temperature increased from 25ºC and significantly reduced at 45ºC. Presence or absence of light did not influence germination. Germination of R. capitata was sensitive to increased salt and moisture stress, as well as to seed burial depth. Only 48% of seeds germinated at 150 mM salt concentration compared to 100% in control (distilled water). Similarly, 15% of seeds germinated at an osmotic potential of ‑0.8 MPa compared to 88% at ‑0.2 MPa. The optimum pH for seed germination of R. capitata was 7 (98% germination), but the seeds also germinated at lower level of pH 5 (85%) and at higher level of pH 10 (75%). In seed burial trial, maximum seedling emergence of 93% occurred at 2 cm depth, and seedling did not emerge from a depth of 12 cm. The high germination ability of R. capitata under a wide range of ecological factors suggests that this species is likely to be the one to cause more problems in a near future, if not managed appropriately.