792 resultados para densification urbaine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the studied region, 35% of the soil collapses are related to leakage from sewage ducts. The paper describes the soils from this part of Brazil and a series of laboratory tests undertaken using water and domestic sewage fluid as the wetting agents. It is considered that the presence of soaps and detergents as recorded by the sodium concentration facilitates the densification of the soils and hence has a major effect on the surface settlement/collapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The X-ray reflectivity technique was applied in the study of tin oxide films deposited by sol-gel dip-coating on borosilicate glasses. The influence of the withdrawal speed and temperature of thermal treatment on the film structure was analyzed. We have compared the thermal evolution of the density and the shrinkage of the films with these properties measured for the monolithic xerogel by helium picnometry and thermomechanical analysis. In agreement with the Landau-Levich model, the layer thickness increases by increasing the withdrawal speed. Nevertheless, it decreases with the increase of the thermal treatment temperature, due to the densification process. The values of apparent density are smaller than the skeletal density, which shows that the films are porous. The comparison between the film and the monolith indicates that shrinkage during firing is anisotropic, occurring essentially perpendicular to the coating surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the effect of organic (Tiron (R)) and inorganic (Mn(11)) additives on the low temperature (< 600 degrees C) densification of the sol-gel dip-coated SnO2 films. The structural and compositional properties of the samples were investigated by X-ray reflectometry (XRR), X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). The results suggest that the replacement of hydroxyl groups at the particle surface by Tiron (R) reduces the level of agglomeration of the sol, increasing the particles packing and the apparent density of the coatings. Undoped and Mn-doped films drawn from a Tiron (R) containing suspension show after firing at 500 degrees C a porosity reduction of 12 and 8.6%, respectively. The porosity decrease is less pronounced (4.3%) for the film without additives. Both XAS and XPS data show the presence of trivalent manganese. The formation of a non-homogeneous solid solution characterised by the presence of Mn(111) replacing tin atom near to the crystallite surface was evidenced by XAS. Additionally, XPS results reveal the presence of metallic Sn at the surface of films containing Tirono. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work illustrates the advancement of research on TiO2-based electroceramics. In this work will be presented that the addition of different dopants, as well as thermal treatments at oxidizing and inert atmosphere, influences of the densification, the mean grain size and the electrical properties of the TiO2-based varistor ceramics. Dopants like Ta2O5, Nb2O5, and Cr2O3 have an especial role in the barrier formation at the grain boundary in the TiO2 varistors, increasing the nonlinear coefficient and decreasing the breakdown electric field. The influence of Cr'(Ti) is to increase the O' and O'(2) adsorption at the grain boundary interface and to promote a decrease in the conductivity by donating electrons to O-2 adsorbed at the grain boundary. In this paper, TiO2 and (Sn,Ti)O-2-based studies of polycrystalline ceramics, which show a non-linear I-V electrical response typical of low voltage varistor systems are also presented. All these systems are potentially promising for varistor applications. (C) 2004 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium alloy parts are ideally suited for advanced aerospace systems and surgical implants because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent corrosion resistance. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy, due to its lower modulus of elasticity and high biocompatibility, is a promising candidate for surgical and aerospace applications. Samples were produced by mixing of initial metallic hydride powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 700 and 1500 degrees C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microbardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like a structure and intergranular P. A few remaining pores are still found, and density above 97% for specimens sintered at 1500 degrees C is reached. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Additions of 0.5 to 2.0 mol% of CoO or MnO2 onto SnO, promote densification of this oxide up to 99% of theoretical density. The temperature of the maximum shrinkage rate (TM) and the relative density in the maximum densification rate (p*) during constant sintering heating rate depend on the dopant concentration. Thus, dopant concentration controls the densifying and nondensifying mechanisms during sintering. The densification of SnO2 witih addition of CoO or MnO, is explained in terms of the creation of oxygen vacancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructural evolution, grain growth and densification for the varistor systems ZnO-Bi2O3 (ZB), ZnO-Bi2O3-Sb2O3 (ZBS), ZnO-Bi2O3-Sb2O3-MnO-Cr 2O3-CoO (ZBSCCM) were studied using constant heating rate sintering, scanning electron microscopy (SEM) and in situ phase formation measurement by high temperature X-ray diffraction (HT-XRD). The results showed that the densifying process is controlled by the formation and decomposition of the Zn2Bi3Sb3O14 pyrochlore (PY) phase for the ZBS and ZBSCCM systems. The addition of transition metals (ZBSCCM system) alters the formation and decomposition reaction temperatures of the pyrochlore phase and the morphology of the Zn7Sb2O12 spinel phase. Thus, the spinel grains act as inclusions and decrease the ZnO grain growth rate. Spinel grain growth kinetics in the ZBSCCM system showed an n value of 2.6, and SEM and HT-XRD results indicate two grain growth mechanisms based on coalescence and Ostwald ripening. © 1996 Chapman & Hall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The particle-growth kinetics of sodium niobate and zirconium titanate powders that were processed by the polymeric precursors method were studied. The growth kinetics that were studied for the particle, in the final stage of crystallization, showed that the growth process occurs in two different stages. For temperatures <800°C, the particle-growth mechanism is associated with surface diffusion, with an activation energy in the range of 40-80 KJ/mol. For temprratures >800°C, particle growth is controlled by densification of the nanometric particle cluster and by a neck-size-controlled particle-growth mechanism. The results suggest that this behavior was typical of the synthesis method, because two different polycation oxides presented the same behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tin oxide is an n-type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of a non-isovalent oxide doping The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits the SnO2 reduction decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at grain boundary leading to densification and grain growth of this polycrystalline oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High purity SnO 2 powder (>99.9%) was compacted in cylindrical pellets and sintered in atmospheres of dry argon, argon with water vapor, oxygen and CO 2 using 10 °C/min up to 1200 °C or isotherms in the range of 1000 to 1200 °C. Time, temperature and sintering atmosphere have large influence on grain growth and low influence on densification of this oxide. Surface diffusion is the dominant mechanism up to 1200 °C and evaporation-condensation is dominant above 1200 °C. The maximum linear shrinkage observed was about 2.0% and attributed to structural rearrangement of particles due to high capillary stresses developed with neighboring particles. © 1999 Trans Tech Publications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tin oxide is an n type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of aliovalent oxide doping. The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As a consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits SnO2 reduction by decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at the sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at the grain boundary leading to densification and grain growth of this polycrystalline oxide.