771 resultados para delta-12 fatty acid desaturase
Resumo:
This study was conducted to explore the effect of different autoclave heating times (30, 60 and 90 min) on fatty acids supply and molecular stability in Brassica carinata seed. Multivariate spectral analyses and correlation analyses were also carried out in our study. The results showed that autoclaving treatments significantly decreased the total fatty acids content in a linear fashion in B. carinata seed as heating time increased. Reduced concentrations were also observed in C18:3n3, C20:1, C22:1n9, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), omega 3 (ω-3) and 9 (ω-9) fatty acids. Correspondingly, the heated seeds showed dramatic reductions in all the peak intensities within lipid-related spectral regions. Results from agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA) indicated that the raw oilseed had completely different structural make-up from the autoclaved seeds in both CH3 and CH2 asymmetric and symmetric stretching region (ca. 2999–2800 cm−1) and lipid ester Cdouble bond; length as m-dashO carbonyl region (ca. 1787–1706 cm−1). However, the oilseeds heated for 30, 60 and 90 min were not grouped into separate classes or ellipses in all the lipid-related regions, indicating that there still exhibited similarities in lipid biopolymer conformations among autoclaved B. carinata seeds. Moreover, strong correlations between spectral information and fatty acid compositions observed in our study could imply that lipid-related spectral parameters might have a potential to predict some fatty acids content in oilseed samples, i.e. B. carinata. However, more data from large sample size and diverse range would be necessary and helpful to draw up a final conclusion.
Resumo:
Increasing recognition of the importance of the long-chain n-3 PUFA, EPA and DHA, to cardiovascular health, and in the case of DHA to normal neurological development in the fetus and the newborn, has focused greater attention on the dietary supply of these fatty acids. The reason for low intakes of EPA and DHA in most developed countries (0 center dot 1-0 center dot 5hairspg/d) is the low consumption of oily fish, the richest dietary source of these fatty acids. An important question is whether dietary intake of the precursor n-3 fatty acid, alpha-linolenic acid (alpha LNA), can provide sufficient amounts of tissue EPA and DHA by conversion through the n-3 PUFA elongation-desaturation pathway. alpha LNA is present in marked amounts in plant sources, including green leafy vegetables and commonly-consumed oils such as rape-seed and soyabean oils, so that increased intake of this fatty acid would be easier to achieve than via increased fish consumption. However, alpha LNA-feeding studies and stable-isotope studies using alpha LNA, which have addressed the question of bioconversion of alpha LNA to EPA and DHA, have concluded that in adult men conversion to EPA is limited (approximately 8%) and conversion to DHA is extremely low (< 0 center dot 1%). In women fractional conversion to DHA appears to be greater (9%), which may partly be a result of a lower rate of utilisation of alpha LNA for beta-oxidation in women. However, up-regulation of the conversion of EPA to DHA has also been suggested, as a result of the actions of oestrogen on Delta 6-desaturase, and may be of particular importance in maintaining adequate provision of DHA in pregnancy. The effect of oestrogen on DHA concentration in pregnant and lactating women awaits confirmation.
Resumo:
The potential to increase the concentrations of n-3 polyunsaturated fatty acids (PUFAs) in milk fat was investigated by studying the effects of feeding a xylose-treated, whole cracked linseed supplement ( rich in alpha-linolenic acid) to dairy cows. Also the effect of increasing the dietary intake of vitamin E on the vitamin E status of milk was investigated. The effect of pasteurisation on milk fatty acid composition was also examined. Using a 3 x 2 factorial design, a total of 60 Holstein dairy cows were fed a total mixed ration based on grass silage supplemented with one of three levels of whole cracked linseed (78, 142 or 209 g . kg(-1) diet dry matter (DM); designated LL, ML or HL, respectively) in combination with one of two levels of additional dietary vitamin E intake ( 6 or 12 g vitamin E . animal(-1) . day(-1); designated LE or HE, respectively). Increasing lipid supplementation reduced (P < 0.01) diet DM intake and milk yield, and increased (P < 0.001) the overall content of oleic, vaccenic, alpha-linolenic and conjugated linoleic acids, and total PUFAs and monounsaturated fatty acids (MUFA). Myristic and palmitic acids in milk fat were reduced ( P < 0.001) through increased lipid supplementation. While α-linolenic acid concentrations were substantially increased this acid only accounted for 0.02 of total fatty acids in milk at the highest level of supplementation (630 g α-linolenic acid &BULL; animal(-1) &BULL; day(-1) for HL). Conjugated linoleic acid concentrations in milk fat were almost doubled by increasing the level of lipid supplementation (8.9, 10.4 and 16.1 g &BULL; kg(-1) fatty acids for LL, ML and HL, respectively). Although milk vitamin E contents were generally increased there was no benefit (P > 0.05) of increasing vitamin E intake from 6 to 12 g . animal(-1) . day(-1). The fatty acid composition of milk was generally not affected by pasteurisation.
Resumo:
Fatty acids have diverse roles in all cells. They are important as a source of energy, as structural components of cell membranes, as signalling molecules and as precursors for the synthesis of eicosanoids. Recent research has suggested that the organization of fatty acids into distinct cellular pools has a particularly important role in cells of the immune system and that forms of lipid trafficking exist, which are as yet poorly understood. This Review examines the nature and regulation of cellular lipid pools in the immune system, their delivery of fatty acids or fatty acid derivatives to specific locations and their potential role in health and disease.
Resumo:
Chronic fish oil intervention had been shown to have a positive impact on endothelial function. Although high-fat meals have often been associated with a loss of postprandial vascular reactivity, studies examining the effects of fish oil fatty acids on vascular function in the postprandial phase are limited. The aim of the present study was to examine the impact of the addition of fish oil fatty acids to a standard test meal on postprandial vascular reactivity. A total of 25 men received in a random order either a placebo oil meal (40 g of mixed fat; fatty acid profile representative of the U.K. diet) or a fish oil meal (31 g of mixed fat and 9 g of fish oil) on two occasions. Vascular reactivity was measured at baseline (0 h) and 4 h after the meal by laser Doppler iontophoresis, and blood samples were taken for the measurement of plasma lipids, total nitrite, glucose and insulin. eNOS (endothelial NO synthase) and NADPH oxidase gene expression were determined in endothelial cells after incubation with TRLs (triacylglycerol-rich lipoproteins) isolated from the plasma samples taken at 4 h. Compared with baseline, sodium nitroprusside (an endothelium-independent vasodilator)-induced reactivity (P = 0.024) and plasma nitrite levels (P = 0.001) were increased after the fish oil meal. In endothelial cells, postprandial TRLs isolated after the fish oil meal increased eNOS and decreased NADPH oxidase gene expression compared with TRLs isolated following the placebo oil meal (P <= 0.03). In conclusion, meal fatty acids appear to be an important determinant of vascular reactivity, with fish oils significantly improving postprandial endothelium-independent vasodilation.
Resumo:
Objective Omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against the development of cardiovascular disease (CVD). Genotype at key genes such as nitric oxide synthase (NOS3) may determine responsiveness to fatty acids. Gene–nutrient interactions may be important in modulating the development of CVD, particularly in high-risk individuals with the metabolic syndrome (MetS). Methods Biomarkers of CVD risk, plasma fatty acid composition, and NOS3 single nucleotide polymorphism (SNP) genotype (rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, and rs743507) were determined in 450 individuals with the MetS from the LIPGENE dietary intervention cohort. The effect of dietary fat modification for 12 weeks on metabolic indices of the MetS was determined to understand potential NOS3 gene–nutrient interactions. Results Several markers of inflammation and dyslipidaemia were significantly different between the genotype groups. A significant gene–nutrient interaction was observed between the NOS3 rs1799983 SNP and plasma n-3 PUFA status on plasma triacylglycerol (TAG) concentrations. Minor allele carriers (AC + AA) showed an inverse association with significantly higher plasma TAG concentrations in those with low plasma n-3 PUFA status and vice versa but the major allele homozygotes (CC) did not. Following n-3 PUFA supplementation, plasma TAG concentrations of minor allele carriers of rs1799983 were considerably more responsive to changes in plasma n-3 PUFA, than major allele homozygotes. Conclusions Carriers of the minor allele at rs1799983 in NOS3 have plasma TAG concentrations which are more responsive to n-3 PUFA. This suggests that these individuals might show greater beneficial effects of n-3 PUFA consumption to reduce plasma TAG concentrations.
Resumo:
Fish-oil supplementation can reduce circulating triacylglycerol (TG) levels and cardiovascular risk. This study aimed to assess independent associations between changes in platelet eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and fasting and postprandial (PP) lipoprotein concentrations and LDL oxidation status, following fish-oil intervention. Fiftyfive mildly hypertriacylglycerolaemic (TG 1·5–4·0 mmol/l) men completed a double-blind placebo controlled cross over study, where individuals consumed 6 g fish oil (3 g EPA � DHA) or 6 g olive oil (placebo)/d for two 6-week intervention periods, with a 12-week wash-out period in between. Fish-oil intervention resulted in a significant increase in the platelet phospholipid EPA (+491 %, P,0·001) and DHA (+44 %, P,0·001) content and a significant decrease in the arachidonic acid (210 %, P,0·001) and g-linolenic acid (224 %, P,0·001) levels. A 30% increase in ex vivo LDL oxidation (P,0·001) was observed. In addition, fish oil resulted in a significant decrease in fasting and PP TG levels (P,0·001), PP non-esterified fatty acid (NEFA) levels, and in the percentage LDL as LDL-3 (P�0·040), and an increase in LDLcholesterol (P�0·027). In multivariate analysis, changes in platelet phospholipid DHA emerged as being independently associated with the rise in LDL-cholesterol, accounting for 16% of the variability in this outcome measure (P�0·030). In contrast, increases in platelet EPA were independently associated with the reductions in fasting (P�0·046) and PP TG (P�0·023), and PP NEFA (P�0·015), explaining 15–20% and 25% of the variability in response respectively. Increases in platelet EPA � DHA were independently and positively associated with the increase in LDL oxidation (P�0·011). EPA and DHA may have differential effects on plasma lipids in mildly hypertriacylglycerolaemic men.
Resumo:
In two separate studies, the cholesterol-lowering efficacy of a diet high in monounsaturated fatty acids (MUFA) was evaluated by means of a randomized crossover trial. In both studies subjects were randomized to receive either a high-MUFA diet or the control diet first, which they followed for a period of 8 weeks; following a washout period of 4–6 weeks they were transferred onto the opposing diet for a further period of 8 weeks. In one study subjects were healthy middle-aged men (n 30), and in the other they were young men (n 23) with a family history of CHD recruited from two centres (Guildford and Dublin). The two studies were conducted over the same time period using identical foods and study designs. Subjects consumed 38% energy as fat, with 18% energy as MUFA and 10% as saturated fatty acids (MUFA diet), or 13% energy as MUFA and 16% as saturated fatty acids (control diet). The polyunsaturated fatty acid content of each diet was 7%. The diets were achieved by providing subjects with manufactured foods such as spreads, ‘ready meals’, biscuits, puddings and breads, which, apart from their fatty acid compositions, were identical for both diets. Subjects were blind to which of the diets they were following on both arms of the study. Weight changes on the diets were less than 1 kg. In the groups combined (n 53) mean total and LDL-cholesterol levels were significantly lower at the end of the MUFA diet than the control diet by 0×29 (SD 0×61) mmol/l (P,0×001) and 0×38 (SD 0×64) mmol/l (P, 0×0001) respectively. In middle-aged men these differences were due to a mean reduction in LDL-cholesterol of ¹11 (SD 12) % on the MUFA diet with no change on the control diet (¹1×1 (SD 10) %). In young men the differences were due to an increase in LDL-cholesterol concentration on the control diet of þ6×2 (SD 13) % and a decrease on the MUFA diet of ¹7×8 (SD 20) %. Differences in the responses of middle-aged and young men to the two diets did not appear to be due to differences in their habitual baseline diets which were generally similar, but appeared to reflect the lower baseline cholesterol concentrations in the younger men. There was a moderately strong and statistically significant inverse correlation between the change in LDLcholesterol concentration on each diet and the baseline fasting LDL-cholesterol concentration (r¹0×49; P,0×0005). In conclusion, diets in which saturated fat is partially replaced by MUFA can achieve significant reductions in total and LDL-cholesterol concentrations, even when total fat and energy intakes are maintained. The dietary approach used to alter fatty acid intakes would be appropriate for achieving reductions in saturated fat intakes in whole populations.
Resumo:
The fatty acid composition of the diet of seven free-living subjects (five men and two women) aged 41–56 years was altered for 1 month. The aim was to increase the intake of monounsaturated fatty acids (MUFAs) from subjects current habitual levels of 12% dietary energy to a target intake of 18% dietary energy, and to decrease saturated fatty acid (SFA) from habitual levels of 16% dietary energy to target levels of 10% dietary energy. The change in fatty acid intake was achieved by supplying volunteers with foods prepared using MUFA-containing spreads or olive oil (ready meals, sweet biscuits and cakes) and also by supplying spreads, cooking oil and MUFA-enriched milk for domestic use. Body weight and plasma total cholesterol measurements were made at baseline and at 2 and 4 weeks on the diet as an aid to maintaining subject compliance. MUFA consumption was significantly increased from 12% dietary energy to 16% dietary energy (P<0.01), and SFA intake was reduced from 16% dietary energy to 6% dietary energy (P<0.01) during the 4-week intervention. The diet failed to achieve the target increase in MUFA but exceeded the target reduction in SFA. This was due to the fact that subjects reduced their total fat intake from a mean habitual level of 38% dietary energy to a mean level of 30% dietary energy. During the dietary period, mean plasma cholesterol levels were lower at 2 weeks (P<0.01) and at 4 weeks (P<0.01) than the baseline, with a mean reduction of 20% over the dietary period. This study demonstrates the difficulty of achieving increased MUFA intakes (by SFA substitution) in free-living populations when only a limited range of fatty-acid modified food products are provided to volunteers.
Resumo:
OBJECTIVE: The present study was carried out to determine effects of test meals of different fatty acid compositions on postprandial lipoprotein and apolipoprotein metabolism. DESIGN: The study was a randomized, single blind design. SETTING: The study was carried out in the Clinical Investigation Unit of the Royal Surrey County Hospital. SUBJECTS: Twelve male normal subjects with an average age of 22.4 +/- 1.4 years (mean +/- SD) were selected from the student population of the University of Surrey; one subject dropped out of the study because he found the test meal unpalatable. INTERVENTIONS: The subjects were given three evening test meals on three separate occasions, in which the oils used were either a mixed oil (rich in saturated fatty acids and approximated the fatty acid intake of the current UK diet), corn oil (rich in n-6 fatty acids), or fish oil (rich in n-3 fatty acids) 40 g of the oil under investigation were incorporated into a rice-based test meal. Triacylglycerol-rich lipoproteins-triacylglycerol (TRL-TAG), TRL-cholesterol (TRL-cholesterol), plasma-TAG, plasma cholesterol (T-C), and serum apolipoprotein A-I and B (apo A-I and B) responses were measured. Postprandial responses were followed for 11 h. RESULTS: Postprandial plasma-TAG responses, calculated as incremental areas under the response curves (IAUC) were significantly reduced following the fish oil meal [365.5 +/- 145.4 mmol/l x min (mean +/- SD)[ compared with the mixed oil meal (552.0 +/- 141.7 mmol/l x min) (P < 0.05) and there was a strong trend towards the same direction in the TRL-TAG responses. In all instances, plasma-and TRL-TAG showed a biphasic response with increased concentrations occurring at 1h and between 3 and 7h postprandially. TRL-cholesterol, T-C, and serum apo A-I and B responses to the three meals were similar. CONCLUSIONS: The findings support the view that fish oils decrease postprandial lipaemia and this may be an important aspect of their beneficial effects in reducing risk of coronary heart disease (CHD). Further work is required to determine the mechanisms responsible for this effect.
Resumo:
The present study reports results from two investigations to determine effects of a 6-week period of moderate n-3 fatty acid supplementation (2.7 g/d) on fasting and on postprandial triacylglycerol and metabolic hormone concentrations in response to standard test meals. In the first study postprandial responses were followed for 210 min after an early morning test meal challenge; in the second study responses to an evening test meal were followed during the evening and overnight for a total period of 12 h. In both studies postprandial triacylglycerol responses to the test meals were significantly reduced after compared with before fish-oil supplementation. In the second study the triacylglycerol peak response seen between 200 and 400 min in subjects studied before supplementation with fish oils was almost completely absent in the same subjects after 6 weeks of n-3 fatty acid supplementation. Analysis of fasting concentrations of metabolites and hormones was carried out on the combined data from the two studies. There were no significant differences in total, low-density-lipoprotein- or high-density-lipoprotein-cholesterol concentrations during fish-oil supplementation, although there was considerable individual variation in cholesterol responses to the supplement. Concentrations of Apo-B and Apo-A1 were unchanged during supplementation with fish oils. Fasting and early morning postprandial GIP concentrations were lower in subjects taking fish oils, possibly due to acute effects of fish-oil capsules taken on the evening before the studies. In both studies fasting insulin and glucose and postprandial insulin concentrations remained unchanged following fish-oil supplementation. The results do not support the view that triacylglycerol-lowering effects of n-3 fatty acids are due to modulation of insulin secretion mediated via the enteroinsular axis. Further studies are required to determine the precise mechanism by which fish oils reduce both fasting and postprandial triacylglycerol concentrations.
Resumo:
Background: We have previously demonstrated that carrying the apolipoprotein (apo) E epsilon 4 (E4+) genotype disrupts omega-3 fatty acids (n − 3 PUFA) metabolism. Here we hypothesise that the postprandial clearance of n − 3 PUFA from the circulation is faster in E4+ compared to non-carriers (E4−). The objective of the study was to investigate the fasted and postprandial fatty acid (FA) profile of triacylglycerol-rich lipoprotein (TRL) fractions: Sf >400 (predominately chylomicron CM), Sf 60 − 400 (VLDL1), and Sf 20 − 60 (VLDL2) according to APOE genotype. Methods: Postprandial TRL fractions were obtained in 11 E4+ (ε3/ε4) and 12 E4− (ε3/ε3) male from the SATgenε study following high saturated fat diet + 3.45 g/d of docosahexaenoic acid (DHA) for 8-wk. Blood samples were taken at fasting and 5-h after consuming a test-meal representative of the dietary intervention. FA were characterized by gas chromatography. Results: At fasting, there was a 2-fold higher ratio of eicosapentaenoic acid (EPA) to arachidonic acid (P = 0.046) as well as a trend towards higher relative% of EPA (P=0.063) in theSf >400 fraction of E4+. Total n − 3 PUFA in the Sf 60 − 400 and Sf 20 − 60 fractions were not APOE genotype dependant. At 5 h, there was a trend towards a time × genotype interaction (P=0.081) for EPA in theSf >400 fraction. When sub-groups were form based on the level of EPA at baseline within the Sf >400 fraction, postprandial EPA (%) was significantly reduced only in the high-EPA group. EPA at baseline significantly predicted the postprandial response in EPA only in E4+ subjects (R2 = 0.816). Conclusion: Despite the DHA supplement contain very low levels of EPA, E4+ subjects with high EPA at fasting potentially have disrupted postprandial n − 3 PUFA metabolism after receiving a high-dose of DHA. Trial registration: Registered at clinicaltrials.gov/show/NCT01544855.
Resumo:
In this work, cholesterol oxide formation and alteration of fatty acid composition were analyzed in n-3 enriched eggs under different storage periods and two temperatures. The eggs enriched with n-3 fatty acids were stored at 5 or 25 degrees C for 45 days and subsequently boiled or fried. For each treatment, 12 yolks were analyzed every 15 days including time zero. The concentrations of the cholesterol oxides 7-ketocholesterol, 7 beta-hydroxycholesterol, and 7 alpha-hydroxycholesterol increased during the storage period and were higher in fried eggs. Only the 7-ketocholesterol was affected by the storage temperature, and its concentration was highest in eggs stored at 25 degrees C. There was no significant difference in the contents of cholesterol and vitamin E at the different storage periods; however, the concentration of vitamin E decreased with thermal treatment. In addition, the n-3 polyunsaturated fatty acids, especially 18:3, 20:5, and 22:6, were reduced throughout the storage at 5 and 25 degrees C.
Resumo:
Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.
Resumo:
Triplet-excited riboflavin ((3)RF*) was found by laser flash photolysis to be quenched by polyunsaturated fatty acid methyl esters in tert-butanol/water (7:3, v/v) in a second-order reaction with k similar to 3.0 x 10(5) L mol(-1) s(-1) at 25 degrees C for methyl linoleate and 3.1 x 10(6) L mol(-1) s(-1), with Delta H double dagger = 22.6 kJ mol(-1) and Delta S double dagger = -62.3 J K(-1) mol(-1), for methyl linolenate in acetonitrile/water (8:2, v/v). For methyl oleate, k was <10(4) L mol(-1) s(-1). For comparison, beta-casein was found to have a rate constant k similar to 4.9 x 10(8) L mol(-1) s(-1). Singlet-excited flavin was not quenched by the esters as evidenced by insensitivity of steady-state fluorescence to their presence. Density functional theory (DFT) calculations showed that electron transfer from unsaturated fatty acid esters to triplet-excited flavins is endergonic, while a formal hydrogen atom transfer is exergonic (Delta G(HAT)degrees = -114.3, -151.2, and -151.2 kJ mol(-1) for oleate, linoleate, and linolenate, respectively, in acetonitrile). The reaction is driven by acidity of the lipid cation radical for which a pK(a) similar to -0.12 was estimated by DFT calculations. Absence of electrochemical activity in acetonitrile during cyclic voltammetry up to 2.0 V versus NHE confirmed that Delta G(ET)degrees > 0 for electron transfer. Interaction of methyl esters with (3)RF* is considered as initiation of the radical chain, which is subsequently propagated by combination reactions with residual oxygen. In this respect, carbon-centered and alkoxyl radicals were detected using the spin trapping technique in combination with electron paramagnetic resonance spectroscopy. Moreover, quenching of 3RF* yields, directly or indirectly, radical species which are capable of initiating oxidation in unsaturated fatty acid methyl esters. Still, deactivation of triplet-excited flavins by lipid derivatives was slower than by proteins (factor up to 10(4)), which react preferentially by electron transfer. Depending on the reaction environment in biological systems (including food), protein radicals are expected to interfere in the mechanism of light-induced lipid oxidation.