835 resultados para cryo-rolling
Resumo:
Measurement of heteronuclear spin-lattice relaxation times is hampered by both low natural abundance and low detection sensitivity. Combined with typically long relaxation times, this results in extended acquisition times which often renders the experiment impractical. Recently a variant of dynamic nuclear polarisation has been demonstrated in which enhanced nuclear spin polarisation, generated in the cryo-solid state, is transferred to the liquid state for detection. Combining this approach with small flip angle pulse trains, similar to the FLASH-T(1) imaging sequence, allows the rapid determination of spin-lattice relaxation times. In this paper we explore this method and its application to the measurement of T(1) for both carbon-13 and nitrogen-15 at natural abundance. The effects of RF inhomogeneity and the influence of proton decoupling in the context of this experiment are also investigated.
Resumo:
Index properties such as the liquid limit and plastic limit are widely used to evaluate certain geotechnical parameters of fine-grained soils. Measurement of the liquid limit is a mechanical process, and the possibility of errors occurring during measurement is not significant. However, this is not the case for plastic limit testing, despite the fact that the current method of measurement is embraced by many standards around the world. The method in question relies on a fairly crude procedure known widely as the ‘thread rolling' test, though it has been the subject of much criticism in recent years. It is essential that a new, more reliable method of measuring the plastic limit is developed using a mechanical process that is both consistent and easily reproducible. The work reported in this paper concerns the development of a new device to measure the plastic limit, based on the existing falling cone apparatus. The force required for the test is equivalent to the application of a 54 N fast-static load acting on the existing cone used in liquid limit measurements. The test is complete when the relevant water content of the soil specimen allows the cone to achieve a penetration of 20 mm. The new technique was used to measure the plastic limit of 16 different clays from around the world. The plastic limit measured using the new method identified reasonably well the water content at which the soil phase changes from the plastic to the semi-solid state. Further evaluation was undertaken by conducting plastic limit tests using the new method on selected samples and comparing the results with values reported by local site investigation laboratories. Again, reasonable agreement was found.
Resumo:
A direct-assembly method to construct three-dimensional (3D) plasmonic nanostructures yields porous plasmonic rolls through the strain-induced self-rolling up of two-dimensional metallic nanopore films. This route is scalable to different hole sizes and film thicknesses, and applicable to a variety of materials, providing general routes towards a diverse family of 3D metamaterials with nano-engineerable optical properties. These plasmonic rolls can be dynamically driven by light irradiation, rolling or unrolling with increasing or decreasing light intensity. Such dynamically controllable 3D plasmonic nanostructures offer opportunities both for sensing and feedback in active nano-actuators. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4711923]
Resumo:
Novel 3D plasmonic rolls are fabricated through strain-induced self-rolling of metallic nanopore sheets attached to elastomeric thin films, with optical properties tunable by varying the size and thickness of nanopores, and dynamically by light irradiation.
Resumo:
The temporal priority principle states that all causes must precede their effects. It is widely assumed that children's causal reasoning is guided by this principle from early in development. However, the empirical studies that have examined children's use of the principle, most of which were conducted some decades ago, in fact show inconsistent findings. Some researchers have argued that 3-year-olds reliably use this principle, whereas others have suggested that it is not until 5 years that children properly grasp the inviolability of the principle. To examine this issue, 100 children, 50 three-year-olds, and 50 four-year-olds, took part in a study in which they had to judge which of two causes yielded an effect. In the task, children saw one event (A), an effect (E), and then another event (B). The events A and B involved the rolling of balls down runways, and the effect E was a Jack-in-a-box popping up. The extent to which E left a visible trace was also varied, because comparisons across previous studies suggested that this may affect performance. As a group, 3- and 4-year-olds performed at above-chance levels, but performance improved with age. The nature of the effect did not have a significant impact on performance. Although some previous studies suggested that 3-year-olds may be more likely to choose B rather than A as a cause due to a recency effect, we found no evidence of this pattern of performance in the younger group. Potential explanations of the age-related improvement in performance are discussed. © 2013 Desmet.
Resumo:
Rod-like micelles, formed from bolaamphiphiles with oligo(ethylene oxide) hydrophilic outer segments and a hydrophobic segment with diacetylene flanked by two urea moieties, were covalently fixated by topochemical photopolymerization to high degrees of polymerization by optimizing the hydrophobic core and the hydrophilic periphery of the bolaamphiphiles. Analysis of the polymerized product with dynamic light scattering in chloroform showed degrees of polymerization of approximately 250. Cryo-TEM of bolaamphiphiles before and after UV irradiation showed that the morphology of the rods was conserved upon topochemical polymerization. © 2014 The Royal Society of Chemistry.
Resumo:
Self-assembling dipeptides conjugated to naphthalene show considerable promise as nanomaterial structures, biomaterials, and drug delivery devices. Biomaterial infections are responsible for high rates of patient mortality and morbidity. The presence of biofilm bacteria, which thrive on implant surfaces, are a huge burden on healthcare budgets, as they are highly resistant to current therapeutic strategies. Ultrashort cationic self-assembled peptides represent a highly innovative and cost-effective strategy to form antibacterial nanomaterials. Lysine conjugated variants display the greatest potency with 2% w/v NapFFKK hydrogels significantly reducing the viable Staphylococcus epidermidis biofilm by 94%. Reducing the size of the R-group methylene chain on cationic moieties resulted in reduction of antibiofilm activity. The primary amine of the protruding R-group tail may not be as readily available to interact with negatively charged bacterial membranes. Cryo-SEM, FTIR, CD spectroscopy, and oscillatory rheology provided evidence of supramolecular hydrogel formation at physiological pH (pH 7.4). Cytotoxicity assays against murine fibroblast (NCTC 929) cell lines confirmed the gels possessed reduced cytotoxicity relative to bacterial cells, with limited hemolysis upon exposure to equine erythrocytes. The results presented in this paper highlight the significant potential of ultrashort cationic naphthalene peptides as future biomaterials.
Resumo:
The abrasion seen on some of the retrieved CoCrMo hip joints has been reported to be caused by entrained hard particles in vivo. However, little work has been reported on the abrasion mechanisms of CoCrMo alloy in simulated body environments. Therefore. this study covers the mapping of micro-abrasion wear mechanisms of cast CoCrMo induced by third body hard particles under a wide range of abrasive test conditions. This study has a specific focus on covering the possible in vivo wear modes seen on metal-on-metal (MoM) surfaces. Nano-indentation and nano-scratch tests were also employed to further investigate the secondary wear mechanisms-nano-scale material deformation that involved in micro-abrasion processes. This work addresses the potential detrimental effects of third body hard particles in vivo such as increased wear rates (debris generation) and corrosion (metal-ion release). The abrasive wear mechanisms of cast CoCrMo have been investigated under various wear-corrosion conditions employing two abrasives, SiC (similar to 4 mu m) and Al(2)O(3) (similar to 1 mu m), in two test solutions, 0.9% NaCl and 25% bovine serum. The specific wear rates, wear mechanisms and transitions between mechanisms are discussed in terms of the abrasive size, volume fraction and the test solutions deployed. The work shows that at high abrasive volume fractions, the presence of protein enhanced the wear loss due to the enhanced particle entrainment, whereas at much lower abrasive volume fractions, protein reduced the wear loss by acting as a boundary lubricant or rolling elements which reduced the abrasivity (load per particle) of the abrasive particles. The abrasive wear rate and wear mechanisms of the CoCrMo are dependent on the nature of the third body abrasives, their entrainment into the contact and the presence of the proteins. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper brings together and analyzes recent work based on the interpretation of the electrochemical measurements made on a modified micro-abrasion-corrosion tester used in several research programmes. These programmes investigated the role of abradant size, test solution pH in abrasion-corrosion of biomaterials, the abrasion-corrosion performance of sintered and thermally sprayed tungsten carbide surfaces under downhole drilling environments and the abrasion-corrosion of UNS S32205 duplex stainless steel. Various abrasion tests were conducted under two-body grooving, three-body rolling and mixed grooving-rolling abrasion conditions, with and without abrasives, on cast F75 cobalt-chromium-molybdenum (CoCrMo) alloy in simulated body fluids, 2205 in chloride containing solutions as well as sprayed and sintered tungsten carbide surfaces in simulated downhole fluids. Pre- and post-test inspections based on optical and scanning electron microscopy analysis are used to help interpret the electrochemical response and current noise measurements made in situ during micro-abrasion-corrosion tests. The complex wear and corrosion mechanisms and their dependence on the microstructure and surface composition as a function of the pH, abrasive concentration, size and type are detailed and linked to the electrochemical signals. The electrochemical versus mechanical processes are plotted for different test parameters and this new approach is used to interpret tribo-corrosion test data to give greater insights into different tribo-corrosion systems. Thus new approaches to interpreting in-situ electrochemical responses to surfaces under different abrasive wear rates, different abrasives and liquid environments (pH and NaCl levels) are made. This representation is directly related to the mechano-electrochemical processes on the surface and avoids quantification of numerous synergistic, antagonistic and additive terms associated with repeat experiments. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Small-scale, decentralized and community-owned renewable energy is widely acknowledged to be a desirable feature of low carbon futures, but faces a range of challenges in the context of conventional, centralized energy systems. This paper draws on transition frameworks to investigate why the UK has been an inhospitable context for community-owned renewables and assesses whether anything fundamental is changing in this regard. We give particular attention to whether political devolution, the creation of elected governments for Scotland, Wales and Northern Ireland, has affected the trajectory of community renewables. Our analysis notes that devolution has increased political attention to community renewables, including new policy targets and support schemes. However, these initiatives are arguably less important than the persistence of key features of socio-technical regimes: market support systems for renewable energy and land-use planning arrangements that systemically favour major projects and large corporations, and keep community renewables to the margins. There is scope for rolling out hybrid pathways to community renewables, via joint ownership or through community benefit funds, but this still positions community energy as an adjunct to energy pathways dominated by large, corporate generation facilities
Resumo:
Abnormal anti-Stokes Raman scattering (AASR) was unambiguously observed in carbon nanotubes (CNT's). In contrast to traditional Raman scattering theory, the absolute value of the Raman frequency of the anti-Stokes peak is not the same as that of the corresponding Stokes peak. It was demonstrated that AASR scattering originates from the unique nanoscale cylindrical structure of CNT's that can be considered naturally as a graphite structure with an intrinsic defect from its rolling. The double-resonance Raman scattering theory was applied to interpret the scattering mechanism of the AASR phenomenon successfully and quantitatively.
Resumo:
Background: RAS is mutated (RASMT) in ~55% of mCRC, and phase III studies have shown that patients harbouring RAS mutations do not benefit from anti-EGFR MoAbs. In addition, ~50% of RAS Wild Type (RASWT) will not benefit from the addition of an EGFR MoAb to standard chemotherapy. Hence, novel treatment strategies are urgently needed for RASMT and > 50% of RASWT mCRC patients. c-MET is overexpressed in ~50-60%, amplified in ~2-3% and mutated in ~3-5% of mCRC. Recent preclinical studies have shown that c-MET is an important mediator of resistance to MEK inhibitors (i) in RASMT mCRC, and that combined MEKi/METi resulted in synergistic reduction in tumour growth in RASMT xenograft models (1). A number of recent studies have highlighted the role of c-MET in mediating primary/secondary resistance to anti-EGFR MoAbs in mCRC, suggesting that patient with RASWT tumours with aberrant c-MET (RASWT/c-MET+) may benefit from anti-c-MET targeted therapies (2). These preclinical data supported the further clinical evaluation of combined MEKi/METi treatment in RASMT and RASWT CRC patients with aberrant c-MET signalling (overexpression, amplification or mutation; RASWT/c-MET+). Methods: MErCuRIC1 is a phase I combination study of METi crizotinib with MEKi PD-0325901. The dose escalation phase, utilizing a rolling six design, recruits 12-24 patients with advanced solid tumours and aims to assess safety/toxicity of combination, recommended phase II (RPII) dose, pharmacokinetics (PK) and pharmacodynamics (PD) (pERK1/2 in PBMC and tumour; soluble c-MET). In the dose expansion phase an additional 30-42 RASMT and RASWT/c-MET mCRC patients with biopsiable disease will be treated at the RPII dose to further evaluate safety, PK, PD and treatment response. In the dose expansion phase additional biopsy and blood samples will be obtained to define mechanisms of response/resistance to crizotinib/PD-0325901 therapy. Enrolment into the dose escalation phase began in December 2014 with cohort 1 still ongoing. EudraCT registry number: 2014-000463-40. (1) Van Schaeybroeck S et al. Cell Reports 2014;7(6):1940-55; (2) Bardelli A et al. Cancer Discov 2013;3(6):658-73. Clinical trial information: 2014-000463-40.
Resumo:
O uso de polímeros naturais no âmbito da preparação de nanocompósitos não tem sido tão amplamente estudado quando comparado com os polímeros sintéticos. Assim, esta tese tem como objectivo estudar metodologias para a preparação de novos materiais nanocompósitos sob a forma de dispersões e filmes utilizando polissacarídeos como matriz. A tese está dividida em cinco capítulos sendo o último capítulo dedicado às conclusões gerais e a sugestões para trabalhos futuros. Inicialmente é apresentada uma breve revisão bibliográfica sobre os principais temas colocando esta tese em contexto. Considerações sobre o uso de polímeros naturais e a sua combinação com a utilização de nanopartículas inorgânicas para a fabricação de novos bionanocomposites são descritas e os objectivos e outline da tese são também apresentados. No segundo capítulo, a preparação de partículas de sílica puras ou modificadas bem como a sua caracterização por FTIR, SEM, TEM, TGA, DLS (tamanho e potencial zeta) e medições de ângulo de contacto são discutidas. De modo a melhorar a compatibilidade da sílica com os polissacarídeos, as partículas SiO2 foram modificados com dois compostos do tipo organosilano: 3- metacril-oxipropil-trimetoxissilano (MPS) e 3-aminopropil-trimetoxissilano (APS). As partículas SiO2@MPS foram posteriormente encapsuladas com de poli(metacrilato de glicidilo) utilizando a técnica de polimerização em emulsão. A utilização dos nanocompósitos resultantes na preparação de dispersões de bionanocompósitos não foi bem sucedida e por esse motivo não os estudos não foram prosseguidos. O uso de SiO2@APS na preparação de dispersões bionanocomposite foi eficiente. No terceiro capítulo é apresentada uma revisão sobre dispersões bionanocompósitas e respectiva caracterização destacando aspectos fundamentais sobre reologia e microestrutura. Em seguida, é discutido o estudo sistemático realizado sobre o comportamento reológico de dispersões de SiO2 utilizando três polissacarídeos distintos no que concerne a carga e as características gelificantes: a goma de alfarroba (não iónica), o quitosano (catiónico) e a goma xantana (aniónica) cujas propriedades reológicas são amplamente conhecidas. Os estudos reológicos realizados sob diferentes condições demonstraram que a formação de géis frágeis e/ou bem estruturados depende do tamanho SiO2, da concentração, do pH e da força iónica. Estes estudos foram confirmados por análises microestruturais usando a microscopia electrónica a baixas temperaturas (Cryo-SEM). No quarto capítulo, são apresentados os estudos relativos à preparação e caracterização de filmes bionanocompósitos utilizando quitosano como matriz. Primeiramente é apresentada uma revisão sobre filmes de bionanocompósitos e os aspectos fundamentais das técnicas de caracterização utilizadas. A escolha do plasticizante e da sua concentração são discutidas com base nas propriedades de filmes de quitosano preparados. Em seguida, o efeito da concentração de sílica e dos métodos utilizados para a dispersar na matriz de polissacarídeo, bem como o efeito da modificação da superfície da sílica é avaliado. As características da superfície e as propriedades de barreira, mecânicas e térmicas são discutidas para cada conjunto de filmes preparados antes e após a sua neutralização. Os resultados obtidos mostraram que a dispersão das cargas no plasticizante e posterior adição à matriz polissacarídica resultaram apenas em pequenas melhorias já que o problema da agregação de sílica não foi ultrapassado. Por esse motivo foram preparados filmes com SiO2@APS os quais apresentaram propriedades melhores apesar da agregação das partículas não ter sido completamente impedida. Tal pode estar relacionado com o processo de secagem dos filmes. Finalmente, no capítulo 5, são apresentadas as principais conclusões obtidas e algumas sugestões para trabalho futuro.
Resumo:
O transporte marítimo e o principal meio de transporte de mercadorias em todo o mundo. Combustíveis e produtos petrolíferos representam grande parte das mercadorias transportadas por via marítima. Sendo Cabo Verde um arquipelago o transporte por mar desempenha um papel de grande relevância na economia do país. Consideramos o problema da distribuicao de combustíveis em Cabo Verde, onde uma companhia e responsavel por coordenar a distribuicao de produtos petrolíferos com a gestão dos respetivos níveis armazenados em cada porto, de modo a satisfazer a procura dos varios produtos. O objetivo consiste em determinar políticas de distribuicão de combustíveis que minimizam o custo total de distribuiçao (transporte e operacões) enquanto os n íveis de armazenamento sao mantidos nos n íveis desejados. Por conveniencia, de acordo com o planeamento temporal, o prob¬lema e divido em dois sub-problemas interligados. Um de curto prazo e outro de medio prazo. Para o problema de curto prazo sao discutidos modelos matemáticos de programacao inteira mista, que consideram simultaneamente uma medicao temporal cont ínua e uma discreta de modo a modelar multiplas janelas temporais e taxas de consumo que variam diariamente. Os modelos sao fortalecidos com a inclusão de desigualdades validas. O problema e então resolvido usando um "software" comercial. Para o problema de medio prazo sao inicialmente discutidos e comparados varios modelos de programacao inteira mista para um horizonte temporal curto assumindo agora uma taxa de consumo constante, e sao introduzidas novas desigualdades validas. Com base no modelo escolhido sao compara¬das estrategias heurísticas que combinam três heur ísticas bem conhecidas: "Rolling Horizon", "Feasibility Pump" e "Local Branching", de modo a gerar boas soluçoes admissíveis para planeamentos com horizontes temporais de varios meses. Finalmente, de modo a lidar com situaçoes imprevistas, mas impor¬tantes no transporte marítimo, como as mas condicões meteorológicas e congestionamento dos portos, apresentamos um modelo estocastico para um problema de curto prazo, onde os tempos de viagens e os tempos de espera nos portos sao aleatórios. O problema e formulado como um modelo em duas etapas, onde na primeira etapa sao tomadas as decisões relativas as rotas do navio e quantidades a carregar e descarregar e na segunda etapa (designada por sub-problema) sao consideradas as decisoes (com recurso) relativas ao escalonamento das operacões. O problema e resolvido por um metodo de decomposto que usa um algoritmo eficiente para separar as desigualdades violadas no sub-problema.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica