928 resultados para control engineering computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decision trees have been proposed as a basis for modifying table based injection to reduce transient particulate spikes during the turbocharger lag period. It has been shown that decision trees can detect particulate spikes in real time. In well calibrated electronically controlled diesel engines these spikes are narrow and are encompassed by a wider NOx spike. Decision trees have been shown to pinpoint the exact location of measured opacity spikes in real time thus enabling targeted PM reduction with near zero NOx penalty. A calibrated dimensional model has been used to demonstrate the possible reduction of particulate matter with targeted injection pressure pulses. Post injection strategy optimized for near stoichiometric combustion has been shown to provide additional benefits. Empirical models have been used to calculate emission tradeoffs over the entire FTP cycle. An empirical model based transient calibration has been used to demonstrate that such targeted transient modifiers are more beneficial at lower engine-out NOx levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in vehicle steering systems offer new opportunities to measure the steering torque and reliably estimate the vehicle sideslip and the tire-road friction coefficient. This paper presents an approach to vehicle stabilization that leverages these estimates to define state boundaries that exclude unstable vehicle dynamics and utilizes a model predictive envelope controller to bound the vehicle motion within this stable region of the state space. This approach provides a large operating region accessible by the driver and smooth interventions at the stability boundaries. Experimental results obtained with a steer-by-wire vehicle and a proof of envelope invariance demonstrate the efficacy of the envelope controller in controlling the vehicle at the limits of handling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation uses simulation to explore the inherent tradeoffs ofcontrolling high-speed and highly robust walking robots while minimizing energy consumption. Using a novel controller which optimizes robustness, energy economy, and speed of a simulated robot on rough terrain, the user can adjust their priorities between these three outcome measures and systematically generate a performance curveassessing the tradeoffs associated with these metrics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software repositories have been getting a lot of attention from researchers in recent years. In order to analyze software repositories, it is necessary to first extract raw data from the version control and problem tracking systems. This poses two challenges: (1) extraction requires a non-trivial effort, and (2) the results depend on the heuristics used during extraction. These challenges burden researchers that are new to the community and make it difficult to benchmark software repository mining since it is almost impossible to reproduce experiments done by another team. In this paper we present the TA-RE corpus. TA-RE collects extracted data from software repositories in order to build a collection of projects that will simplify extraction process. Additionally the collection can be used for benchmarking. As the first step we propose an exchange language capable of making sharing and reusing data as simple as possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular engineering of cell-instructive artificial extracellular matrices is a powerful means to control cell behavior and enable complex processes of tissue formation and regeneration. This work reports on a novel method to produce such smart biomaterials by recapitulating the crosslinking chemistry and the biomolecular characteristics of the biopolymer fibrin in a synthetic analog. We use activated coagulation transglutaminase factor XIIIa for site-specific coupling of cell adhesion ligands and engineered growth factor proteins to multiarm poly(ethylene glycol) macromers that simultaneously form proteolytically sensitive hydrogel networks in the same enzyme-catalyzed reaction. Growth factor proteins are quantitatively incorporated and released upon cell-derived proteolytic degradation of the gels. Primary stromal cells can invade and proteolytically remodel these networks both in an in vitro and in vivo setting. The synthetic ease and potential to engineer their physicochemical and bioactive characteristics makes these hybrid networks true alternatives for fibrin as provisional drug delivery platforms in tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation, the problem of creating effective large scale Adaptive Optics (AO) systems control algorithms for the new generation of giant optical telescopes is addressed. The effectiveness of AO control algorithms is evaluated in several respects, such as computational complexity, compensation error rejection and robustness, i.e. reasonable insensitivity to the system imperfections. The results of this research are summarized as follows: 1. Robustness study of Sparse Minimum Variance Pseudo Open Loop Controller (POLC) for multi-conjugate adaptive optics (MCAO). The AO system model that accounts for various system errors has been developed and applied to check the stability and performance of the POLC algorithm, which is one of the most promising approaches for the future AO systems control. It has been shown through numerous simulations that, despite the initial assumption that the exact system knowledge is necessary for the POLC algorithm to work, it is highly robust against various system errors. 2. Predictive Kalman Filter (KF) and Minimum Variance (MV) control algorithms for MCAO. The limiting performance of the non-dynamic Minimum Variance and dynamic KF-based phase estimation algorithms for MCAO has been evaluated by doing Monte-Carlo simulations. The validity of simple near-Markov autoregressive phase dynamics model has been tested and its adequate ability to predict the turbulence phase has been demonstrated both for single- and multiconjugate AO. It has also been shown that there is no performance improvement gained from the use of the more complicated KF approach in comparison to the much simpler MV algorithm in the case of MCAO. 3. Sparse predictive Minimum Variance control algorithm for MCAO. The temporal prediction stage has been added to the non-dynamic MV control algorithm in such a way that no additional computational burden is introduced. It has been confirmed through simulations that the use of phase prediction makes it possible to significantly reduce the system sampling rate and thus overall computational complexity while both maintaining the system stable and effectively compensating for the measurement and control latencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was to develop a high-fidelity dynamic model of a parafoilpayload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called ‘lockout’. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system. Lockout instability is more favorable when tow tensions are large. Thus there is a tradeoff between susceptibility to lockout and rapid deployment. Control strategies were also developed for optimal tow up and to maintain stability in the event of disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reducing the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid structure interaction process is a key for a breakthrough in wind-turbine technology. A fundamental step in that direction is the implementation of aeroelastic models capable of capturing the complex features of innovative prototype blades, so they can be tested at realistic full-scale conditions with a reasonable computational cost. We make use of a code based on a combination of two advanced numerical models implemented in a parallel HPC supercomputer platform: First, a model of the structural response of heterogeneous composite blades, based on a variation of the dimensional reduction technique proposed by Hodges and Yu. This technique has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam. The reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic sense, allowing accurate modeling of the blade structure as a 1-D finite-element problem. This substantially reduces the computational effort required to model the structural dynamics at each time step. Second, a novel aerodynamic model based on an advanced implementation of the BEM(Blade ElementMomentum) Theory; where all velocities and forces are re-projected through orthogonal matrices into the instantaneous deformed configuration to fully include the effects of large displacements and rotation of the airfoil sections into the computation of aerodynamic forces. This allows the aerodynamic model to take into account the effects of the complex flexo-torsional deformation that can be captured by the more sophisticated structural model mentioned above. In this thesis we have successfully developed a powerful computational tool for the aeroelastic analysis of wind-turbine blades. Due to the particular features mentioned above in terms of a full representation of the combined modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads, it constitutes a substantial advancement ahead the state-of-the-art aeroelastic models currently available, like the FAST-Aerodyn suite. In this thesis, we also include the results of several experiments on the NREL-5MW blade, which is widely accepted today as a benchmark blade, together with some modifications intended to explore the capacities of the new code in terms of capturing features on blade-dynamic behavior, which are normally overlooked by the existing aeroelastic models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical Power Assisted Steering system (EPAS) will likely be used on future automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has been identified as one of the most suitable actuators for the EPAS application. Motor characteristic variations, which can be indicated by variations of the motor parameters such as the coil resistance and the torque constant, directly impart inaccuracies in the control scheme based on the nominal values of parameters and thus the whole system performance suffers. The motor controller must address the time-varying motor characteristics problem and maintain the performance in its long service life. In this dissertation, four adaptive control algorithms for brushless DC (BLDC) motors are explored. The first algorithm engages a simplified inverse dq-coordinate dynamics controller and solves for the parameter errors with the q-axis current (iq) feedback from several past sampling steps. The controller parameter values are updated by slow integration of the parameter errors. Improvement such as dynamic approximation, speed approximation and Gram-Schmidt orthonormalization are discussed for better estimation performance. The second algorithm is proposed to use both the d-axis current (id) and the q-axis current (iq) feedback for parameter estimation since id always accompanies iq. Stochastic conditions for unbiased estimation are shown through Monte Carlo simulations. Study of the first two adaptive algorithms indicates that the parameter estimation performance can be achieved by using more history data. The Extended Kalman Filter (EKF), a representative recursive estimation algorithm, is then investigated for the BLDC motor application. Simulation results validated the superior estimation performance with the EKF. However, the computation complexity and stability may be barriers for practical implementation of the EKF. The fourth algorithm is a model reference adaptive control (MRAC) that utilizes the desired motor characteristics as a reference model. Its stability is guaranteed by Lyapunov’s direct method. Simulation shows superior performance in terms of the convergence speed and current tracking. These algorithms are compared in closed loop simulation with an EPAS model and a motor speed control application. The MRAC is identified as the most promising candidate controller because of its combination of superior performance and low computational complexity. A BLDC motor controller developed with the dq-coordinate model cannot be implemented without several supplemental functions such as the coordinate transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC motor model is developed to study the practical implementation issues of the dq-coordinate control strategy, such as the initialization and rotor angle transducer resolution. This model can also be beneficial during first stage development in automotive BLDC motor applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation discusses structural-electrostatic modeling techniques, genetic algorithm based optimization and control design for electrostatic micro devices. First, an alternative modeling technique, the interpolated force model, for electrostatic micro devices is discussed. The method provides improved computational efficiency relative to a benchmark model, as well as improved accuracy for irregular electrode configurations relative to a common approximate model, the parallel plate approximation model. For the configuration most similar to two parallel plates, expected to be the best case scenario for the approximate model, both the parallel plate approximation model and the interpolated force model maintained less than 2.2% error in static deflection compared to the benchmark model. For the configuration expected to be the worst case scenario for the parallel plate approximation model, the interpolated force model maintained less than 2.9% error in static deflection while the parallel plate approximation model is incapable of handling the configuration. Second, genetic algorithm based optimization is shown to improve the design of an electrostatic micro sensor. The design space is enlarged from published design spaces to include the configuration of both sensing and actuation electrodes, material distribution, actuation voltage and other geometric dimensions. For a small population, the design was improved by approximately a factor of 6 over 15 generations to a fitness value of 3.2 fF. For a larger population seeded with the best configurations of the previous optimization, the design was improved by another 7% in 5 generations to a fitness value of 3.0 fF. Third, a learning control algorithm is presented that reduces the closing time of a radiofrequency microelectromechanical systems switch by minimizing bounce while maintaining robustness to fabrication variability. Electrostatic actuation of the plate causes pull-in with high impact velocities, which are difficult to control due to parameter variations from part to part. A single degree-of-freedom model was utilized to design a learning control algorithm that shapes the actuation voltage based on the open/closed state of the switch. Experiments on 3 test switches show that after 5-10 iterations, the learning algorithm lands the switch with an impact velocity not exceeding 0.2 m/s, eliminating bounce.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small clusters of gallium oxide, technologically important high temperature ceramic, together with interaction of nucleic acid bases with graphene and small-diameter carbon nanotube are focus of first principles calculations in this work. A high performance parallel computing platform is also developed to perform these calculations at Michigan Tech. First principles calculations are based on density functional theory employing either local density or gradient-corrected approximation together with plane wave and gaussian basis sets. The bulk Ga2O3 is known to be a very good candidate for fabricating electronic devices that operate at high temperatures. To explore the properties of Ga2O3 at nonoscale, we have performed a systematic theoretical study on the small polyatomic gallium oxide clusters. The calculated results find that all lowest energy isomers of GamOn clusters are dominated by the Ga-O bonds over the metal-metal or the oxygen-oxygen bonds. Analysis of atomic charges suggest the clusters to be highly ionic similar to the case of bulk Ga2O3. In the study of sequential oxidation of these slusters starting from Ga2O, it is found that the most stable isomers display up to four different backbones of constituent atoms. Furthermore, the predicted configuration of the ground state of Ga2O is recently confirmed by the experimental result of Neumark's group. Guided by the results of calculations the study of gallium oxide clusters, performance related challenge of computational simulations, of producing high performance computers/platforms, has been addressed. Several engineering aspects were thoroughly studied during the design, development and implementation of the high performance parallel computing platform, rama, at Michigan Tech. In an attempt to stay true to the principles of Beowulf revolutioni, the rama cluster was extensively customized to make it easy to understand, and use - for administrators as well as end-users. Following the results of benchmark calculations and to keep up with the complexity of systems under study, rama has been expanded to a total of sixty four processors. Interest in the non-covalent intereaction of DNA with carbon nanotubes has steadily increased during past several years. This hybrid system, at the junction of the biological regime and the nanomaterials world, possesses features which make it very attractive for a wide range of applicatioins. Using the in-house computational power available, we have studied details of the interaction between nucleic acid bases with graphene sheet as well as high-curvature small-diameter carbon nanotube. The calculated trend in the binding energies strongly suggests that the polarizability of the base molecules determines the interaction strength of the nucleic acid bases with graphene. When comparing the results obtained here for physisorption on the small diameter nanotube considered with those from the study on graphene, it is observed that the interaction strength of nucleic acid bases is smaller for the tube. Thus, these results show that the effect of introducing curvature is to reduce the binding energy. The binding energies for the two extreme cases of negligible curvature (i.e. flat graphene sheet) and of very high curvature (i.e. small diameter nanotube) may be considered as upper and lower bounds. This finding represents an important step towards a better understanding of experimentally observed sequence-dependent interaction of DNA with Carbon nanotubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is focused on the control of a system with recycle. A new control strategy using neural network combined with PID controller was proposed. The combined controller was studied and tested on the pressure control of a vaporizer inside a para-xylene production process. The major problems are the negative effects of recycle and the delays on instability and performance. The neural network was designed to move the process close to the set points while the PID accomplishes the finer level of disturbance rejection and offset reductions. Our simulation results show that during control, the neural network was able to determine the nonlinear relationship between steady state and manipulated variables. The results also show the disturbance rejection was handled by PID controller effectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.