967 resultados para continental Celtic
Resumo:
The Whittard canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments (JC36-042-Spre01; JC36-100-Spre01) were conducted in the eastern and western branches of the Whittard canyon testing short term (3 - 7 day) responses of sediment communities to deposition of nitrogen-rich marine and nitrogen-poor terrigenous phytodetritus. Isotopic labels were traced into faunal biomass and bulk sediments, and the bacterial polar lipid fatty acids (PLFAs). These data files provide the data on macrofaunal and bacterial uptake of the isotopically-labelled organic carbon and nitrogen, and macrofaunal community composition at the two stations within the Whittard canyon
Resumo:
The presence and abundance of anaerobic ammonium-oxidizing (anammox) bacteria was investigated in continental shelf and slope sediments (300-3000 m water depth) off northwest Africa in a combined approach applying quantitative polymerase chain reaction (q-PCR) analysis of anammox-specific 16S rRNA genes and anammox-specific ladderane biomarker lipids. We used the presence of an intact ladderane monoether lipid with a phosphocholine (PC) headgroup as a direct indicator for living anammox bacteria and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane lipids, both intact and core lipids, in agreement with the presence of anammoxspecific 16S rRNA gene copies, indicating that anammox occurs at all sites. Concentrations of ladderane core lipids in core top sediments varied between 0.3 and 97 ng g**-1 sediment, with the highest concentrations detected at the sites located on the shelf at shallower water depths between 300 and 500 m. In contrast, the C20 [3]-ladderane monoether-PC lipid was most abundant in a core top sediment from 1500 m water depth. Both anammox-specific 16S rRNA gene copy numbers and the concentration of the C20 [3]-ladderane monoether-PC lipid increased downcore in sediments located at greater water depths, showing highest concentrations of 1.2 x 10**8 copies g**-1 sediment and 30 pg g**-1 sediment, respectively, at the deepest station of 3000 m water depth. This suggests that the relative abundance of anammox bacteria is higher in sediments at intermediate to deep water depths where carbon mineralization rates are lower but where anammox is probably more important than denitrification.
Resumo:
Rupertina stabilis occupies a depth restricted biotope of suspension feeding animals situated at the Norwegian continental margin. It extends from the Voring plateau northwards for at least 200 - 300 km, in depths between 600 and 800 m. This slope position is known for relatively strong bottom currents and shifting watermass boundaries. - The species is attached to hard substrates, mainly stones or hydroid stalks and obviously prefers an elevated position. It is building a permanent cyst of sponge spicules and debris at the apertural region. The spicules are used to support a pseudopodial network similar to that described from Halyphysema (LIPPS 1983). It is believed to serve as a filter apparatus. - A review of known occurences in the Atlantic is given, suggesting a temperature adaption of the species ranging from 0°C to a maximum of 8°C. Specimens were successfully cultured for about 2-3 weeks.
Resumo:
Detailed 14C AMS data and isotope based stratigraphies from high-resolution paleoceanographic records for the last 22 ka of cores from the upper continental slope off NE Brazil reveal sedimentation rates of up to 100 cm per 1000 yr. Variations in the sediment composition relate to changes in the input of terrigenous material. The sedimentation is controlled by sea level and by the climatic regime of the hinterland. Short-term changes in the tropical wind field may act as a climatic trigger. The zonality of the SE trades was probably increased and the monsoonal activity over Africa reduced during the Younger Dryas period.
Resumo:
With various low-temperature experiments performed on magnetic mineral extracts of marine sedimentary deposits from the Argentine continental slope near the Rio de la Plata estuary, a so far unreported style of partial magnetic self-reversal has been detected. In these sediments the sulphate-methane transition (SMT) zone is situated at depths between 4 and 8 m, where reductive diagenesis severely alters the magnetic mineral assemblage. Throughout the sediment column magnetite and ilmenite are present together with titanomagnetite and titanohematite of varying compositions. In the SMT zone (titano-)magnetite only occurs as inclusions in a siliceous matrix and as intergrowths with lamellar ilmenite and titanium-rich titanohematite, originating from high temperature deuteric oxidation within the volcanic host rocks. These abundant structures were visualized by scanning electron microscopy and analysed by energy dispersive spectroscopy. Warming of field-cooled and zero-field-cooled low-temperature saturation remanence displays magnetic phase transitions of titanium-rich titanohematite below 50 K and the Verwey transition of magnetite. A prominent irreversible decline characterizes zero-field cooling of room temperature saturation remanence. It typically sets out at ~210 K and is most clearly developed in the lower part of the SMT zone, where low-temperature hysteresis measurements identified ~210 K as the blocking temperature range of a titanohematite phase with a Curie temperature of around 240 K. The mechanism responsible for the marked loss of remanence is, therefore, sought in partial magnetic self-reversal by magnetostatic interaction of (titano-)magnetite and titanohematite. When titanohematite becomes ferrimagnetic upon cooling, its spontaneous magnetic moments order antiparallel to the (titano-)magnetite remanence causing an drastic initial decrease of global magnetization. The loss of remanence during subsequent further cooling appears to result from two combined effects (1) magnetic interaction between the two phases by which the (titano-)magnetite domain structure is substantially modified and (2) low-temperature demagnetization of (titano-)magnetite due to decreasing magnetocrystalline anisotropy. The depletion of titanomagnetite and superior preservation of titanohematite is characteristic for strongly reducing sedimentary environments. Typical residuals of magnetic mineral assemblages derived from basaltic volcanics will be intergrowths of titanohematite lamellae with titanomagnetite relics. Low-temperature remanence cycling is, therefore, proposed as a diagnostic method to magnetically characterize such alteration (palaeo-)environments.
Resumo:
The benthic foraminiferal populations along three traverses across the Northwest African continental margin were analyzed on the base of ca. 60 surface sediment samples. Depth ranges of 213 species were established and the main trends of vertical distribution are compared with those known from adjacent regions. Main faunal breaks occure at 100/200 m and 1000/1500 m depth of water. Some species show latitudinal distribution boundaries and the same applies to population density (standing stock), reflecting the regional distribution of nutrients supply by river discharge and upwelling processes. - High proportions of Bolivina test at the lower slope indicate extended downslope transport.