956 resultados para constant pressure heat capacity
Resumo:
The atmosphere is a global influence on the movement of heat and humidity between the continents, and thus significantly affects climate variability. Information about atmospheric circulation are of major importance for the understanding of different climatic conditions. Dust deposits from maar lakes and dry maars from the Eifel Volcanic Field (Germany) are therefore used as proxy data for the reconstruction of past aeolian dynamics.rnrnIn this thesis past two sediment cores from the Eifel region are examined: the core SM3 from Lake Schalkenmehren and the core DE3 from the Dehner dry maar. Both cores contain the tephra of the Laacher See eruption, which is dated to 12,900 before present. Taken together the cores cover the last 60,000 years: SM3 the Holocene and DE3 the marine isotope stages MIS-3 and MIS-2, respectively. The frequencies of glacial dust storm events and their paleo wind direction are detected by high resolution grain size and provenance analysis of the lake sediments. Therefore two different methods are applied: geochemical measurements of the sediment using µXRF-scanning and the particle analysis method RADIUS (rapid particle analysis of digital images by ultra-high-resolution scanning of thin sections).rnIt is shown that single dust layers in the lake sediment are characterized by an increased content of aeolian transported carbonate particles. The limestone-bearing Eifel-North-South zone is the most likely source for the carbonate rich aeolian dust in the lake sediments of the Dehner dry maar. The dry maar is located on the western side of the Eifel-North-South zone. Thus, carbonate rich aeolian sediment is most likely to be transported towards the Dehner dry maar within easterly winds. A methodology is developed which limits the detection to the aeolian transported carbonate particles in the sediment, the RADIUS-carbonate module.rnrnIn summary, during the marine isotope stage MIS-3 the storm frequency and the east wind frequency are both increased in comparison to MIS-2. These results leads to the suggestion that atmospheric circulation was affected by more turbulent conditions during MIS-3 in comparison to the more stable atmospheric circulation during the full glacial conditions of MIS-2.rnThe results of the investigations of the dust records are finally evaluated in relation a study of atmospheric general circulation models for a comprehensive interpretation. Here, AGCM experiments (ECHAM3 and ECHAM4) with different prescribed SST patterns are used to develop a synoptic interpretation of long-persisting east wind conditions and of east wind storm events, which are suggested to lead to an enhanced accumulation of sediment being transported by easterly winds to the proxy site of the Dehner dry maar.rnrnThe basic observations made on the proxy record are also illustrated in the 10 m-wind vectors in the different model experiments under glacial conditions with different prescribed sea surface temperature patterns. Furthermore, the analysis of long-persisting east wind conditions in the AGCM data shows a stronger seasonality under glacial conditions: all the different experiments are characterized by an increase of the relative importance of the LEWIC during spring and summer. The different glacial experiments consistently show a shift from a long-lasting high over the Baltic Sea towards the NW, directly above the Scandinavian Ice Sheet, together with contemporary enhanced westerly circulation over the North Atlantic.rnrnThis thesis is a comprehensive analysis of atmospheric circulation patterns during the last glacial period. It has been possible to reconstruct important elements of the glacial paleo climate in Central Europe. While the proxy data from sediment cores lead to a binary signal of the wind direction changes (east versus west wind), a synoptic interpretation using atmospheric circulation models is successful. This shows a possible distribution of high and low pressure areas and thus the direction and strength of wind fields which have the capacity to transport dust. In conclusion, the combination of numerical models, to enhance understanding of processes in the climate system, with proxy data from the environmental record is the key to a comprehensive approach to paleo climatic reconstruction.rn
Resumo:
This dissertation will be focused on the characterization of an atmospheric pressure plasma jet source with an application oriented diagnostic approach and the description of processes supported by this plasma source. The plasma source investigated is a single electrode plasma jet. Schlieren images, optical emission spectra, temperature and heat flux profiles are analyzed to deeply investigate the fluid dynamic, the chemical composition and the thermal output of the plasma generated with a nanosecond-pulsed high voltage generator. The maximum temperature measured is about 45 °C and values close to the room temperature are reached 10 mm down the source outlet, ensuring the possibility to use the plasma jet for the treatment of thermosensitive materials, such as, for example, biological substrate or polymers. Electrospinning of polymeric solution allows the production of nanofibrous non-woven mats and the plasma pre-treatment of the solutions leads to the realization of defect free nanofibers. The use of the plasma jet allows the electrospinnability of a non-spinnable poly(L-lactic acid) (PLLA) solution, suitable for the production of biological scaffold for the wound dressing.
Resumo:
Addressing current limitations of state-of-the-art instrumentation in aerosol research, the aim of this work was to explore and assess the applicability of a novel soft ionization technique, namely flowing atmospheric-pressure afterglow (FAPA), for the mass spectrometric analysis of airborne particulate organic matter. Among other soft ionization methods, the FAPA ionization technique was developed in the last decade during the advent of ambient desorption/ionization mass spectrometry (ADI–MS). Based on a helium glow discharge plasma at atmospheric-pressure, excited helium species and primary reagent ions are generated which exit the discharge region through a capillary electrode, forming the so-called afterglow region where desorption and ionization of the analytes occurs. Commonly, fragmentation of the analytes during ionization is reported to occur only to a minimum extent, predominantly resulting in the formation of quasimolecular ions, i.e. [M+H]+ and [M–H]– in the positive and the negative ion mode, respectively. Thus, identification and detection of signals and their corresponding compounds is facilitated in the acquired mass spectra. The focus of the first part of this study lies on the application, characterization and assessment of FAPA–MS in the offline mode, i.e. desorption and ionization of the analytes from surfaces. Experiments in both positive and negative ion mode revealed ionization patterns for a variety of compound classes comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides, and alkaloids. Besides the always emphasized detection of quasimolecular ions, a broad range of signals for adducts and losses was found. Additionally, the capabilities and limitations of the technique were studied in three proof-of-principle applications. In general, the method showed to be best suited for polar analytes with high volatilities and low molecular weights, ideally containing nitrogen- and/or oxygen functionalities. However, for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and oxidation products which impede a clear signal assignment in the acquired mass spectra. Nonetheless, FAPA–MS showed to be capable of detecting and identifying common limonene oxidation products in secondary OA (SOA) particles on a filter sample and, thus, is considered a suitable method for offline analysis of OA particles. In the second as well as the subsequent parts, FAPA–MS was applied online, i.e. for real time analysis of OA particles suspended in air. Therefore, the acronym AeroFAPA–MS (i.e. Aerosol FAPA–MS) was chosen to refer to this method. After optimization and characterization, the method was used to measure a range of model compounds and to evaluate typical ionization patterns in the positive and the negative ion mode. In addition, results from laboratory studies as well as from a field campaign in Central Europe (F–BEACh 2014) are presented and discussed. During the F–BEACh campaign AeroFAPA–MS was used in combination with complementary MS techniques, giving a comprehensive characterization of the sampled OA particles. For example, several common SOA marker compounds were identified in real time by MSn experiments, indicating that photochemically aged SOA particles were present during the campaign period. Moreover, AeroFAPA–MS was capable of detecting highly oxidized sulfur-containing compounds in the particle phase, presenting the first real-time measurements of this compound class. Further comparisons with data from other aerosol and gas-phase measurements suggest that both particulate sulfate as well as highly oxidized peroxyradicals in the gas phase might play a role during formation of these species. Besides applying AeroFAPA–MS for the analysis of aerosol particles, desorption processes of particles in the afterglow region were investigated in order to gain a more detailed understanding of the method. While during the previous measurements aerosol particles were pre-evaporated prior to AeroFAPA–MS analysis, in this part no external heat source was applied. Particle size distribution measurements before and after the AeroFAPA source revealed that only an interfacial layer of OA particles is desorbed and, thus, chemically characterized. For particles with initial diameters of 112 nm, desorption radii of 2.5–36.6 nm were found at discharge currents of 15–55 mA from these measurements. In addition, the method was applied for the analysis of laboratory-generated core-shell particles in a proof-of-principle study. As expected, predominantly compounds residing in the shell of the particles were desorbed and ionized with increasing probing depths, suggesting that AeroFAPA–MS might represent a promising technique for depth profiling of OA particles in future studies.
Resumo:
Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.
Resumo:
Tolerance to low temperature and high pressure may allow shallow-water species to extend bathymetric range in response to changing climate, but adaptation to contrasting shallow-water environments may affect tolerance to these factors. The brackish shallow-water shrimp Palaemon varians demonstrates remarkable tolerance to elevated hydrostatic pressure and low temperature, but inhabits a highly variable environment: environmental adaptation may therefore make P. varians tolerances unrepresentative of other shallow-water species. Critical thermal maximum (CTmax), critical hydrostatic pressure maximum (CPmax), and acute respiratory response to hydrostatic pressure were assessed in the shallow-water shrimp Palaemon serratus, which inhabits a more stable intertidal habitat. P. serratus’ CTmax was 22.3°C when acclimated at 10°C, and CPmax was 5.9, 10.1, and 14.1 MPa when acclimated at 5, 10, and 15°C respectively: these critical tolerances were consistently lower than P. varians. Respiratory responses to acute hyperbaric exposures similarly indicated lower tolerance to hydrostatic pressure in P. serratus than in P. varians. Contrasting tolerances likely reflect physiological adaptation to differing environments and reveal that the capacity for depth-range extension may vary among species from different habitats.
Resumo:
In the last years, the European countries have paid increasing attention to renewable sources and greenhouse emissions. The Council of the European Union and the European Parliament have established ambitious targets for the next years. In this scenario, biomass plays a prominent role since its life cycle produces a zero net carbon dioxide emission. Additionally, biomass can ensure plant operation continuity thanks to its availability and storage ability. Several conventional systems running on biomass are available at the moment. Most of them are performant either in the large-scale or in the small power range. The absence of an efficient system on the small-middle scale inspired this thesis project. The object is an innovative plant based on a wet indirectly fired gas turbine (WIFGT) integrated with an organic Rankine cycle (ORC) unit for combined heat and power production. The WIFGT is a performant system in the small-middle power range; the ORC cycle is capable of giving value to low-temperature heat sources. Their integration is investigated in this thesis with the aim of carrying out a preliminary design of the components. The targeted plant output is around 200 kW in order not to need a wide cultivation area and to avoid biomass shipping. Existing in-house simulation tools are used: They are adapted to this purpose. Firstly the WIFGT + ORC model is built; Zero-dimensional models of heat exchangers, compressor, turbines, furnace, dryer and pump are used. Different fluids are selected but toluene and benzene turn out to be the most suitable. In the indirectly fired gas turbine a pressure ratio around 4 leads to the highest efficiency. From the thermodynamic analysis the system shows an electric efficiency of 38%, outdoing other conventional plants in the same power range. The combined plant is designed to recover thermal energy: Water is used as coolant in the condenser. It is heated from 60°C up to 90°C, ensuring the possibility of space heating. Mono-dimensional models are used to design the heat exchange equipment. Different types of heat exchangers are chosen depending on the working temperature. A finned-plate heat exchanger is selected for the WIFGT heat transfer equipment due to the high temperature, oxidizing and corrosive environment. A once-through boiler with finned tubes is chosen to vaporize the organic fluid in the ORC. A plate heat exchanger is chosen for the condenser and recuperator. A quasi-monodimensional model for single-stage axial turbine is implemented to design both the WIFGT and the ORC turbine. The system simulation after the components design shows an electric efficiency around 34% with a decrease by 10% compared to the zero-dimensional analysis. The work exhibits the system potentiality compared to the existing plants from both technical and economic point of view.
Resumo:
During short-term postural changes, the factors determining the amplitude of intracranial pulse pressure (ICPPA) remain constant, except for cerebrovascular resistance (CVR). Therefore, it may be possible to draw conclusions from the ICPPA onto the cerebrovascular resistance (CVR) and thus the relative change in cerebral perfusion pressure (CPP).
Resumo:
Due to the existence of a velocity slip and temperature jump on the solid walls, the heat transfer in microchannels significantly differs from the one in the macroscale. In our research, we have focused on the pressure driven gas flows in a simple finite microchannel geometry, with an entrance and an outlet, for low Reynolds (Re<200) and low Knudsen (Kn<0.01) numbers. For such a regime, the slip induced phenomena are strongly connected with the viscous effects. As a result, heat transfer is also significantly altered. For the optimization of flow conditions, we have investigated various temperature gradient configurations, additionally changing Reynolds and Knudsen numbers. The entrance effects, slip flow, and temperature jump lead to complex relations between flow behavior and heat transfer. We have shown that slip effects are generally insignificant for flow behavior. However, two configuration setups (hot wall cold gas and cold wall hot gas) are affected by slip in distinguishably different ways. For the first one, which concerns turbomachinery, the mass flow rate can increase by about 1% in relation to the no-slip case, depending on the wall-gas temperature difference. Heat transfer is more significantly altered. The Nusselt number between slip and no-slip cases at the outlet of the microchannel is increased by about 10%.
Resumo:
Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: We estimated the diagnostic accuracy of ultrasound detrusor thickness measurement for BOO and investigated whether this method can replace PFS for the diagnosis of BOO in some patients with lower urinary tract symptoms. MATERIALS AND METHODS: Detrusor thickness was measured by linear ultrasound (7.5 MHz) at a filling volume of greater than 50% of cystometric capacity in 102 men undergoing PFS for LUTS. All patients with prior treatment for bladder outlet obstruction and those with underlying neurological disorders were excluded from analysis. Detrusor thickness was correlated with PFS data. Obstruction was defined according to the Abrams-Griffiths nomogram. RESULTS: Detrusor thickness was significantly higher (p <0.0001) in obstructed (61 cases, median detrusor thickness 2.7 mm, IQR 2.4 to 3.3) compared to unobstructed (18 cases, median detrusor thickness 1.7 mm, IQR 1.5 to 2) as well as equivocal (23 cases, median detrusor thickness 1.8 mm, IQR 1.5 to 2.2) cases. A weak to medium Spearman correlation was found between detrusor thickness and PFS parameters. For a diagnosis of BOO, detrusor thickness of 2.9 mm or greater had a positive predictive value of 100%, a negative predictive value of 54%, specificity of 100% and sensitivity of 43%. ROC analysis revealed that detrusor thickness had a high predictive value for BOO with an AUC of 0.88 (95% CI 0.81-0.94). CONCLUSIONS: In men with LUTS without prior treatment and/or neurological disorders, ultrasonographically assessed detrusor thickness 2.9 mm or greater has a high predictive value for BOO and can replace PFS for the diagnosis of BOO. However, this cutoff value needs to be validated in a larger study population.
Resumo:
A prothrombotic state may contribute to the elevated cardiovascular risk in patients with obstructive sleep apnea (OSA). We investigated the relationship between apnea severity and hemostasis factors and effect of continuous positive airway pressure (CPAP) treatment on hemostatic activity. We performed full overnight polysomnography in 44 OSA patients (mean age 47+/-10 years), yielding apnea-hypopnea index (AHI) and mean nighttime oxyhemoglobin saturation (SpO2) as indices of apnea severity. For treatment, subjects were double-blind randomized to 2 weeks of either therapeutic CPAP (n = 18), 3 l/min supplemental nocturnal oxygen (n = 16) or placebo-CPAP (<1 cm H2O) (n = 10). Levels of von Willebrand factor antigen (VWF:Ag), soluble tissue factor (sTF), D-dimer, and plasminogen activator inhibitor (PAI)-1 antigen were measured in plasma pre- and posttreatment. Before treatment, PAI-1 was significantly correlated with AHI (r = 0.47, p = 0.001) and mean nighttime SpO2 (r = -0.32, p = 0.035), but these OSA measures were not significantly related with VWF:Ag, sTF, and D-dimer. AHI was a significant predictor of PAI-1 (R2 = 0.219, standardized beta = 0.47, p = 0.001), independent of mean nighttime SpO2, body mass index (BMI), and age. A weak time-by-treatment interaction for PAI-1 was observed (p = 0.041), even after adjusting for age, BMI, pre-treatment AHI, and mean SpO2 (p = 0.046). Post hoc analyses suggested that only CPAP treatment was associated with a decrease in PAI-1 (p = 0.039); there were no changes in VWF:Ag, sTF, and D-dimer associated with treatment with placebo-CPAP or with nocturnal oxygen. Apnea severity may be associated with impairment in the fibrinolytic capacity. To the extent that our sample size was limited, the observation that CPAP treatment led to a decrease in PAI-1 in OSA must be regarded as tentative.
Resumo:
The aim of this study was to compare the maximum urethral closure pressure (MUCP) measures with two different techniques: water perfused catheter and microtip transducer catheters with respect to reproducibility and comparability for urethral pressure measurements. Eighteen women with stress urinary incontinence had repeat static urethral pressure profilometry on a different day using a dual microtip transducer and water perfused catheter (Brown and Wickham). The investigators were blinded to the results of the other. The microtip measurements were taken in the 45 degrees upright sitting position with the patient at rest at a bladder capacity of 250 ml using an 8 Fr Gaeltec(R) double microtip transducer withdrawn at 1 mm/s, and the transducer was orientated in the three o'clock position. Three different measures were taken for each patient. Three water perfusion measurements were performed with the patient at rest in the 45 degrees upright position at a bladder capacity of 250 ml using an 8 Fr BARD dual lumen catheter withdrawn at 1 mm/s. The mean water perfusion MUCP measure was 26.1 cm H(2)0, significantly lower than the mean microtip measure of 35.7 cm H(2)0. The correlation coefficient comparing each water perfusion measurement with the other water perfusion measures in the same patient was excellent, at 0.95 (p = 0.01). Correlation coefficient comparing each microtip measure with the other microtip measure in the same patient was also good, ranging from 0.70 to 0.80. This study confirms that both water perfusion catheters and microtip transducers have excellent or very good reproducibility with an acceptable intraindividual variation for both methods.
Resumo:
By applying high pressure freezing and freeze-substitution, we observed large inclusions of homogeneous appearance in the front of locomoting Walker carcinosarcoma cells that have not been described earlier. Live cell imaging revealed that these inclusions were poor in lipids and nucleic acids but had a high lysine (and hence protein) content. Usually one such structure 2-5 mum in size was present at the front of motile Walker cells, predominantly in the immediate vicinity of newly forming blebs. By correlating the lysine-rich areas in fixed and embedded cells with electron microscopic pictures, inclusions could be assigned to confined, faintly stained cytoplasmic areas that lacked a surrounding membrane; they were therefore called pseudovacuoles. After high-pressure freezing and freeze substitution, pseudovacuoles appeared to be filled with 20 nm large electron-transparent patches surrounded by 12 and 15 nm large particles. The heat shock protein Hsp90 was identified by peptide sequencing as a major fluorescent band on SDS-PAGE of lysine-labelled Walker cell extracts. By immunofluorescence, Hsp90 was found to be enriched in pseudovacuoles. Colocalization of the lysine with a potassium-specific dye in living cells revealed that pseudovacuoles act as K+ stores in the vicinity of forming blebs. We propose that pseudovacuoles might support blebbing by locally regulating the intracellular hydrostatic pressure.
Resumo:
Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.
Resumo:
The use of conventional orifice-plate meter is typically restricted to measurements of steady flows. This study proposes a new and effective computational-experimental approach for measuring the time-varying (but steady-in-the-mean) nature of turbulent pulsatile gas flows. Low Mach number (effectively constant density) steady-in-the-mean gas flows with large amplitude fluctuations (whose highest significant frequency is characterized by the value fF) are termed pulsatile if the fluctuations have a direct correlation with the time-varying signature of the imposed dynamic pressure difference and, furthermore, they have fluctuation amplitudes that are significantly larger than those associated with turbulence or random acoustic wave signatures. The experimental aspect of the proposed calibration approach is based on use of Coriolis-meters (whose oscillating arm frequency fcoriolis >> fF) which are capable of effectively measuring the mean flow rate of the pulsatile flows. Together with the experimental measurements of the mean mass flow rate of these pulsatile flows, the computational approach presented here is shown to be effective in converting the dynamic pressure difference signal into the desired dynamic flow rate signal. The proposed approach is reliable because the time-varying flow rate predictions obtained for two different orifice-plate meters exhibit the approximately same qualitative, dominant features of the pulsatile flow.