905 resultados para computer-aided qualitative data analysis software
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
Measurements in civil engineering load tests usually require considerable time and complex procedures. Therefore, measurements are usually constrained by the number of sensors resulting in a restricted monitored area. Image processing analysis is an alternative way that enables the measurement of the complete area of interest with a simple and effective setup. In this article photo sequences taken during load displacement tests were captured by a digital camera and processed with image correlation algorithms. Three different image processing algorithms were used with real images taken from tests using specimens of PVC and Plexiglas. The data obtained from the image processing algorithms were also compared with the data from physical sensors. A complete displacement and strain map were obtained. Results show that the accuracy of the measurements obtained by photogrammetry is equivalent to that from the physical sensors but with much less equipment and fewer setup requirements. © 2015Computer-Aided Civil and Infrastructure Engineering.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
Currently, due to the widespread use of computers and the internet, students are trading libraries for the World Wide Web and laboratories with simulation programs. In most courses, simulators are made available to students and can be used to proof theoretical results or to test a developing hardware/product. Although this is an interesting solution: low cost, easy and fast way to perform some courses work, it has indeed major disadvantages. As everything is currently being done with/in a computer, the students are loosing the “feel” of the real values of the magnitudes. For instance in engineering studies, and mainly in the first years, students need to learn electronics, algorithmic, mathematics and physics. All of these areas can use numerical analysis software, simulation software or spreadsheets and in the majority of the cases data used is either simulated or random numbers, but real data could be used instead. For example, if a course uses numerical analysis software and needs a dataset, the students can learn to manipulate arrays. Also, when using the spreadsheets to build graphics, instead of using a random table, students could use a real dataset based, for instance, in the room temperature and its variation across the day. In this work we present a framework which uses a simple interface allowing it to be used by different courses where the computers are the teaching/learning process in order to give a more realistic feeling to students by using real data. A framework is proposed based on a set of low cost sensors for different physical magnitudes, e.g. temperature, light, wind speed, which are connected to a central server, that the students have access with an Ethernet protocol or are connected directly to the student computer/laptop. These sensors use the communication ports available such as: serial ports, parallel ports, Ethernet or Universal Serial Bus (USB). Since a central server is used, the students are encouraged to use sensor values results in their different courses and consequently in different types of software such as: numerical analysis tools, spreadsheets or simply inside any programming language when a dataset is needed. In order to do this, small pieces of hardware were developed containing at least one sensor using different types of computer communication. As long as the sensors are attached in a server connected to the internet, these tools can also be shared between different schools. This allows sensors that aren't available in a determined school to be used by getting the values from other places that are sharing them. Another remark is that students in the more advanced years and (theoretically) more know how, can use the courses that have some affinities with electronic development to build new sensor pieces and expand the framework further. The final solution provided is very interesting, low cost, simple to develop, allowing flexibility of resources by using the same materials in several courses bringing real world data into the students computer works.
Resumo:
BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.
Resumo:
This is a study of a state of the art implementation of a new computer integrated testing (CIT) facility within a company that designs and manufactures transport refrigeration systems. The aim was to use state of the art hardware, software and planning procedures in the design and implementation of three CIT systems. Typical CIT system components include data acquisition (DAQ) equipment, application and analysis software, communication devices, computer-based instrumentation and computer technology. It is shown that the introduction of computer technology into the area of testing can have a major effect on such issues as efficiency, flexibility, data accuracy, test quality, data integrity and much more. Findings reaffirm how the overall area of computer integration continues to benefit any organisation, but with more recent advances in computer technology, communication methods and software capabilities, less expensive more sophisticated test solutions are now possible. This allows more organisations to benefit from the many advantages associated with CIT. Examples of computer integration test set-ups and the benefits associated with computer integration have been discussed.
Resumo:
Supervisory systems evolution makes the obtaining of significant information from processes more important in the way that the supervision systems' particular tasks are simplified. So, having signal treatment tools capable of obtaining elaborate information from the process data is important. In this paper, a tool that obtains qualitative data about the trends and oscillation of signals is presented. An application of this tool is presented as well. In this case, the tool, implemented in a computer-aided control systems design (CACSD) environment, is used in order to give to an expert system for fault detection in a laboratory plant
Resumo:
Recently, morphometric measurements of the ascending aorta have been done with ECG-gated multidector computerized tomography (MDCT) to help the development of future novel transcatheter therapies (TCT); nevertheless, the variability of such measurements remains unknown. Thirty patients referred for ECG-gated CT thoracic angiography were evaluated. Continuous reformations of the ascending aorta, perpendicular to the centerline, were obtained automatically with a commercially available computer aided diagnosis (CAD). Then measurements of the maximal diameter were done with the CAD and manually by two observers (separately). Measurements were repeated one month later. The Bland-Altman method, Spearman coefficients, and a Wilcoxon signed-rank test were used to evaluate the variability, the correlation, and the differences between observers. The interobserver variability for maximal diameter between the two observers was up to 1.2 mm with limits of agreement [-1.5, +0.9] mm; whereas the intraobserver limits were [-1.2, +1.0] mm for the first observer and [-0.8, +0.8] mm for the second observer. The intraobserver CAD variability was 0.8 mm. The correlation was good between observers and the CAD (0.980-0.986); however, significant differences do exist (P<0.001). The maximum variability observed was 1.2 mm and should be considered in reports of measurements of the ascending aorta. The CAD is as reproducible as an experienced reader.
Resumo:
Exploratory and descriptive study based on quantitative and qualitative methods that analyze the phenomenon of violence against adolescents based on gender and generational categories. The data source was reports of violence from the Curitiba Protection Network from 2010 to 2012 and semi-structured interviews with 16 sheltered adolescents. Quantitative data were analyzed using SPSS software version 20.0 and the qualitative data were subjected to content analysis. The adolescents were victims of violence in the household and outside of the family environment, as victims or viewers of violence. The violence was experienced at home, mostly toward girls, with marked overtones of gender violence. More than indicating the magnitude of the issue, this study can give information to help qualify the assistance given to victimized people and address how to face this issue.
Resumo:
El presente manual de uso del software de visualización de datos “Ocean Data View” (ODV) describe la exploración, análisis y visualización de datos oceanográficos según el formato de la colección mundial de base de datos del océano “World Ocean Database” (WOD). El manual comprende 6 ejercicios prácticos donde se describe paso a paso la creación de las metavariables, la importación de los datos y su visualización mediante mapas de latitud, longitud y gráficos de dispersión, secciones verticales y series de tiempo. Se sugiere el uso extensivo del ODV para la visualización de datos oceanográficos por el personal científico del IMARPE.
Resumo:
The paper presents a method of analyzing Rigid Frames by use of the Conjugate Beam Theory. The development of the method along with an example is given. This method has been used to write a computer program for the analysis of twin box culverts. The culverts may be analyzed under any fill height and any of the standard truck loadings. The wall and slab thickness are increased by the computer program as necessary. The final result is steel requirements both for moment and shear, and the slab and wall thickness.
Resumo:
Background: The repertoire of statistical methods dealing with the descriptive analysis of the burden of a disease has been expanded and implemented in statistical software packages during the last years. The purpose of this paper is to present a web-based tool, REGSTATTOOLS http://regstattools.net intended to provide analysis for the burden of cancer, or other group of disease registry data. Three software applications are included in REGSTATTOOLS: SART (analysis of disease"s rates and its time trends), RiskDiff (analysis of percent changes in the rates due to demographic factors and risk of developing or dying from a disease) and WAERS (relative survival analysis). Results: We show a real-data application through the assessment of the burden of tobacco-related cancer incidence in two Spanish regions in the period 1995-2004. Making use of SART we show that lung cancer is the most common cancer among those cancers, with rising trends in incidence among women. We compared 2000-2004 data with that of 1995-1999 to assess percent changes in the number of cases as well as relative survival using RiskDiff and WAERS, respectively. We show that the net change increase in lung cancer cases among women was mainly attributable to an increased risk of developing lung cancer, whereas in men it is attributable to the increase in population size. Among men, lung cancer relative survival was higher in 2000-2004 than in 1995-1999, whereas it was similar among women when these time periods were compared. Conclusions: Unlike other similar applications, REGSTATTOOLS does not require local software installation and it is simple to use, fast and easy to interpret. It is a set of web-based statistical tools intended for automated calculation of population indicators that any professional in health or social sciences may require.
Resumo:
This master’s thesis aims to study and represent from literature how evolutionary algorithms are used to solve different search and optimisation problems in the area of software engineering. Evolutionary algorithms are methods, which imitate the natural evolution process. An artificial evolution process evaluates fitness of each individual, which are solution candidates. The next population of candidate solutions is formed by using the good properties of the current population by applying different mutation and crossover operations. Different kinds of evolutionary algorithm applications related to software engineering were searched in the literature. Applications were classified and represented. Also the necessary basics about evolutionary algorithms were presented. It was concluded, that majority of evolutionary algorithm applications related to software engineering were about software design or testing. For example, there were applications about classifying software production data, project scheduling, static task scheduling related to parallel computing, allocating modules to subsystems, N-version programming, test data generation and generating an integration test order. Many applications were experimental testing rather than ready for real production use. There were also some Computer Aided Software Engineering tools based on evolutionary algorithms.
Resumo:
Pro gradu -tutkielman tavoitteena on selvittää, mitkä ovat kahden yrityksen läheisen verkostoyhteistyösuhteen menestystekijät ja kuinka yritys pystyy parantamaan onnistumistaan verkostosuhteissaan. Päämääränä on selvittää kirjallisuudesta löydettyjen menestystekijöiden avulla, mikä on case –yritysten yhteistyösuhteiden ja kumppanuuskyvykkyyden nykytila, pullonkaulatekijät ja kuinka niitä voidaan parantaa. Tutkielman tavoitteisiin on pyritty kvalitatiivisiin tutkimusmenetelmiin kuuluvalla case –tutkimuksella. Aineisto kerättiin teemahaastatteluin ja analysoitiin purkamalla ne sanallisiin, teema-alueiden mukaisiin kokonaisuuksiin. Analyysissä käytettiin osittain Atlas.Ti –ohjelmistoa. Tutkimuksen tulokset osoittavat, että läheisen verkostoyhteistyösuhteen menestystekijät ovat luottamus, sitoutuminen ja kommunikaatio sekä verkostoidentiteetti. Näistä luottamuksen tila oli tutkituissa suhteissa hyvä ja sitoutumisenkin kohtuullinen. Sen sijaan verkostoidentiteetti oli jossain määrin epäselvä ja kommunikaatiossa oli puutteita kasvaen sitä mukaan, kun organisaatiohierarkiassa edetään korkeammalle. Nämä mahdollisesti heikentävät läheisestä suhteesta saatavia hyötyjä. Tulokset osoittavat myös sen, että nostaakseen onnistumisen tason kaikissa yhteistyösuhteissaan, niiden tulee pyrkiä järjestelmällisesti hyödyntämään aikaisempaa yhteistyökokemustaan ja näin rakentamaan kumppanuuskyvykkyyttään. Kohdeyrityksissä oli tehty vielä vähän konkreettisia toimenpiteitä yritystason kumppanuuskyvykkyyden kohentamiseksi.
Resumo:
This study presents an automatic, computer-aided analytical method called Comparison Structure Analysis (CSA), which can be applied to different dimensions of music. The aim of CSA is first and foremost practical: to produce dynamic and understandable representations of musical properties by evaluating the prevalence of a chosen musical data structure through a musical piece. Such a comparison structure may refer to a mathematical vector, a set, a matrix or another type of data structure and even a combination of data structures. CSA depends on an abstract systematic segmentation that allows for a statistical or mathematical survey of the data. To choose a comparison structure is to tune the apparatus to be sensitive to an exclusive set of musical properties. CSA settles somewhere between traditional music analysis and computer aided music information retrieval (MIR). Theoretically defined musical entities, such as pitch-class sets, set-classes and particular rhythm patterns are detected in compositions using pattern extraction and pattern comparison algorithms that are typical within the field of MIR. In principle, the idea of comparison structure analysis can be applied to any time-series type data and, in the music analytical context, to polyphonic as well as homophonic music. Tonal trends, set-class similarities, invertible counterpoints, voice-leading similarities, short-term modulations, rhythmic similarities and multiparametric changes in musical texture were studied. Since CSA allows for a highly accurate classification of compositions, its methods may be applicable to symbolic music information retrieval as well. The strength of CSA relies especially on the possibility to make comparisons between the observations concerning different musical parameters and to combine it with statistical and perhaps other music analytical methods. The results of CSA are dependent on the competence of the similarity measure. New similarity measures for tonal stability, rhythmic and set-class similarity measurements were proposed. The most advanced results were attained by employing the automated function generation – comparable with the so-called genetic programming – to search for an optimal model for set-class similarity measurements. However, the results of CSA seem to agree strongly, independent of the type of similarity function employed in the analysis.